The approximation in the uniform norm of a continuous function f (x) = f (x(1), ... , x(n)) by continuous sums g(1) (h(1) (x)) + g(2) (h(2) (x)), where the functions h(1) and h(2) are fixed, is considered. A Chebyshev type criterion for best approximation is established in terms of paths with respect to the functions h(1) and h(2).
机构:
Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, AustraliaUniv New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
Sloan, Ian H.
Wozniakowski, Henryk
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
Univ Warsaw, Inst Appl Math, Ul Banacha 2, PL-02097 Warsaw, PolandUniv New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
机构:
Univ Paul Valery Montpellier 3, Montpellier, France
Univ Montpellier, IMAG, CNRS, Montpellier, FranceUniv Paul Valery Montpellier 3, Montpellier, France