Empirical Mode Decomposition - An Introduction

被引:0
|
作者
Zeiler, A. [1 ]
Faltermeier, R. [2 ]
Keck, I. R. [1 ]
Tome, A. M. [3 ]
Puntonet, C. G. [4 ]
Lang, E. W. [1 ]
机构
[1] Univ Regensburg, Dept Biophys, CIML Grp, D-93040 Regensburg, Germany
[2] Univ Hosp Regensburg, Clin Neurosurgery, D-93040 Regensburg, Germany
[3] Univ Aveiro, IEETA, DETI, P-3810 Aveiro, Portugal
[4] Univ Granada, ETSIIT, DATC, E-18071 Granada, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to external stimuli, biomedical signals are in general non-linear and non-stationary. Empirical Mode Decomposition in conjunction with a Hilbert spectral transform, together called Hilbert-Huang Transform, is ideally suited to extract essential components which are characteristic of the underlying biological or physiological processes. The method is fully adaptive and generates the basis to represent the data solely from these data and based on them. The basis functions, called Intrinsic Mode Functions (IMFs) represent a complete set of locally orthogonal basis functions whose amplitude and frequency may vary over time. The contribution reviews the technique of EMD and related algorithms and discusses illustrative applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Empirical mode decomposition and climate variability
    Coughlin, Katie
    Tung, Ka Kit
    HILBERT-HUANG TRANSFORM AND ITS APPLICATIONS, 2005, 5 : 149 - 165
  • [32] Empirical Mode Decomposition: Improvement and Application
    Peel, M. C.
    Pegram, G. G. S.
    McMahon, T. A.
    MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 2996 - 3002
  • [33] Empirical Mode Decomposition for Saliency Detection
    Rudinac, Maja
    Lenseigne, Boris
    Jonker, Pieter P.
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12), 2012, : 365 - 368
  • [34] Extremum Mean Empirical Mode Decomposition
    Pan, JianJia
    Tang, YuanYan
    2012 5TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2012, : 1556 - 1561
  • [35] Empirical mode decomposition with missing values
    Kim, Donghoh
    Oh, Hee-Seok
    SPRINGERPLUS, 2016, 5
  • [36] WEIGHTED SLIDING EMPIRICAL MODE DECOMPOSITION
    Faltermeier, R.
    Zeiler, A.
    Tome, A. M.
    Brawanski, A.
    Lang, E. W.
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2011, 3 (04) : 509 - 526
  • [37] Empirical mode decomposition and its application
    Xu, Xiao-Gang
    Xu, Guan-Lei
    Wang, Xiao-Tong
    Qin, Xu-Jia
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2009, 37 (03): : 581 - 585
  • [38] Empirical mode decomposition and its application
    Yu, DJ
    Ren, WX
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING FOR YOUNG EXPERTS, VOLS 1 AND 2, 2004, : 396 - 401
  • [39] Adaptive Beamforming with Empirical Mode Decomposition
    Shin, Junseob
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2020,
  • [40] Succinct and fast empirical mode decomposition
    Li, Hongguang
    Hu, Yue
    Li, Fucai
    Meng, Guang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 85 : 879 - 895