CONVERGENCE OF SELF-ADAPTIVE PROJECTION METHODS WITH LINEAR SEARCH FOR PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS

被引:0
|
作者
Zhu, Li-Jun [1 ,2 ]
Postolache, Mihai [3 ,4 ,5 ,6 ]
She, Yaoyao [7 ]
机构
[1] North Minzu Univ, Key Lab Intelligent Informat & Big Data Proc Ning, Yinchuan 750021, Ningxia, Peoples R China
[2] North Minzu Univ, Hlth Big Data Res Inst, Yinchuan 750021, Ningxia, Peoples R China
[3] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[4] Asia Univ, Dept Interior Design, Taichung, Taiwan
[5] Gh Mihoc C Iacob Inst Math Stat & Appl Math, Romanian Acad, Bucharest 050711, Romania
[6] Univ Politehn Bucuresti, Dept Math & Informat, Bucharest 060042, Romania
[7] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational inequality; fixed point; pseudomonotone operators; pseudocontractive operators; projection; linear search; GRADIENT METHODS; EXTRAGRADIENT METHOD; ITERATIVE ALGORITHM; THEOREMS; SYSTEMS; WEAK;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The pseudomonotone variational inequalities and fixed point problems are investigated in Hilbert spaces. We present a self-adaptive projection method with linear search for finding a common solution of the pseudomonotone variational inequalities and fixed points of pseudocontractive operators. We show the strong convergence of the suggested algorithm. Some related corollaries are also given.
引用
收藏
页码:1541 / 1554
页数:14
相关论文
共 50 条
  • [41] Projection methods with linesearch technique for pseudomonotone equilibrium problems and fixed point problems
    Zhu, Li-Jun
    Yao, Yonghong
    Postolache, Mihai
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (01): : 3 - 14
  • [42] PROJECTION METHODS WITH LINESEARCH TECHNIQUE FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS
    Zhu, Li-Jun
    Yao, Yonghong
    Postolache, Mihai
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (01): : 3 - 14
  • [43] A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems
    Jolaoso L.O.
    Aphane M.
    Fixed Point Theory and Applications, 2020 (1)
  • [44] A SELF-ADAPTIVE PROJECTION METHOD FOR A CLASS OF VARIANT VARIATIONAL INEQUALITIES
    Bnouhachem, Abdellah
    Noor, Muhammad Aslam
    Khalfaoui, Mohamed
    Sheng Zhaohan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (01): : 117 - 129
  • [45] An inertial shrinking projection self-adaptive algorithm for solving split variational inclusion problems and fixed point problems in Banach spaces
    Ngwepe, Matlhatsi Dorah
    Jolaoso, Lateef Olakunle
    Aphane, Maggie
    Adiele, Ugochukwu Oliver
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [46] Projection subgradient algorithms for solving pseudomonotone variational inequalities and pseudomonotone equilibrium problems
    Guo, Wenping
    Yu, Youli
    Zhu, Zhichuan
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (03): : 75 - 86
  • [47] PROJECTION SUBGRADIENT ALGORITHMS FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
    Guo, Wenping
    Yu, Youli
    Zhu, Zhichuan
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (03): : 75 - 86
  • [48] CONVERGENCE OF EXTRAGRADIENT-TYPE METHODS FOR FIXED POINT PROBLEMS AND QUASIMONOTONE VARIATIONAL INEQUALITIES
    Yu, Youli
    Zhao, Yufei
    Yin, Tzu-Chien
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (10) : 2225 - 2237
  • [49] Convergence Theorems for Hierarchical Fixed Point Problems and Variational Inequalities
    Karahan, Ibrahim
    Ozdemir, Murat
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [50] A new dynamical system with self-adaptive dynamical stepsize for pseudomonotone mixed variational inequalities
    Ju, Xingxing
    Li, Chuandong
    Dai, Yu-Hong
    Chen, Jiawei
    OPTIMIZATION, 2024, 73 (01) : 159 - 188