CONVERGENCE OF SELF-ADAPTIVE PROJECTION METHODS WITH LINEAR SEARCH FOR PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS

被引:0
|
作者
Zhu, Li-Jun [1 ,2 ]
Postolache, Mihai [3 ,4 ,5 ,6 ]
She, Yaoyao [7 ]
机构
[1] North Minzu Univ, Key Lab Intelligent Informat & Big Data Proc Ning, Yinchuan 750021, Ningxia, Peoples R China
[2] North Minzu Univ, Hlth Big Data Res Inst, Yinchuan 750021, Ningxia, Peoples R China
[3] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[4] Asia Univ, Dept Interior Design, Taichung, Taiwan
[5] Gh Mihoc C Iacob Inst Math Stat & Appl Math, Romanian Acad, Bucharest 050711, Romania
[6] Univ Politehn Bucuresti, Dept Math & Informat, Bucharest 060042, Romania
[7] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational inequality; fixed point; pseudomonotone operators; pseudocontractive operators; projection; linear search; GRADIENT METHODS; EXTRAGRADIENT METHOD; ITERATIVE ALGORITHM; THEOREMS; SYSTEMS; WEAK;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The pseudomonotone variational inequalities and fixed point problems are investigated in Hilbert spaces. We present a self-adaptive projection method with linear search for finding a common solution of the pseudomonotone variational inequalities and fixed points of pseudocontractive operators. We show the strong convergence of the suggested algorithm. Some related corollaries are also given.
引用
收藏
页码:1541 / 1554
页数:14
相关论文
共 50 条