共 50 条
Mesoporous Carbon Nitride-Tungsten Oxide Composites for Enhanced Photocatalytic Hydrogen Evolution
被引:100
|作者:
Kailasam, Kamalakannan
[1
]
Fischer, Anna
[2
]
Zhang, Guigang
[3
,4
,5
]
Zhang, Jinshui
[3
,4
,5
]
Schwarze, Michael
[2
]
Schroeder, Marc
[2
]
Wang, Xinchen
[3
,4
,5
]
Schomaecker, Reinhard
[2
]
Thomas, Arne
[1
]
机构:
[1] Tech Univ Berlin, Dept Chem, Funct Mat, D-10623 Berlin, Germany
[2] Tech Univ Berlin, Dept Chem, D-10623 Berlin, Germany
[3] Fuzhou Univ, Res Inst Photocatalysis, Fujian Prov Key Lab Photocatalysis, Fuzhou 350002, Peoples R China
[4] Fuzhou Univ, State Key Lab Breeding Base, Fuzhou 350002, Peoples R China
[5] Fuzhou Univ, Coll Chem & Chem Engn, Fuzhou 350002, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
graphitic carbon nitrides;
mesoporosity;
hydrogen evolution;
tungsten oxide;
z-scheme;
ORGANIC-INORGANIC COMPOSITE;
VISIBLE-LIGHT;
HARD TEMPLATES;
H-2;
EVOLUTION;
WATER;
PHOTOCURRENT;
SOLIDS;
SEMICONDUCTORS;
GENERATION;
MORPHOLOGY;
D O I:
10.1002/cssc.201403278
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Composites of mesoporous polymeric carbon nitride and tungsten(VI) oxide show very high photocatalytic activity for the evolution of hydrogen from water under visible light and in the presence of sacrificial electron donors. Already addition of very small amounts of WO3 yields up to a twofold increase in the efficiency when compared to bulk carbon nitrides and their composites and more notably even to the best reported mesoporous carbon nitride-based photocatalytic materials. The higher activity can be attributed to the high surface area and synergetic effect of the carbon nitrides and the WO3 resulting in improved charge separation through a photocatalytic solid-state Z-scheme mechanism.
引用
收藏
页码:1404 / 1410
页数:7
相关论文