3D time-domain simulation of electromagnetic diffusion phenomena: A finite-element electric-field approach

被引:130
|
作者
Um, Evan Schankee [1 ]
Harris, Jerry M. [1 ]
Alumbaugh, David L. [2 ]
机构
[1] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
[2] Schlumberger EMI Technol Ctr, Richmond, CA USA
关键词
DIFFERENCE; RESISTIVITY; FREQUENCY;
D O I
10.1190/1.3473694
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a finite-element time-domain (FETD) approach for the simulation of 3D electromagnetic (EM) diffusion phenomena. The finite-element algorithm efficiently simulates transient electric fields and the time derivatives of magnetic fields in general anisotropic earth media excited by multiple arbitrarily configured electric dipoles with various signal waveforms. To compute transient electromagnetic fields, the electric field diffusion equation is transformed into a system of differential equations via Galerkin's method with homogeneous Dirichlet boundary conditions. To ensure numerical stability and an efficient time step, the system of the differential equations is discretized in time using an implicit backward Euler scheme. The resultant FETD matrix-vector equation is solved using a sparse direct solver along with a fill-in reduced ordering, technique. When advancing the solution in time, the FETD algorithm adjusts the time step by examining whether or not the current step size can be doubled without unacceptably affecting the accuracy of the solution. To simulate a step-off source waveform, the 3D FETD algorithm also incorporates a 3D finite-element direct current (FEDC) algorithm that solves Poisson's equation using a secondary potential method for a general anisotropic earth model. Examples of controlled-source FETD simulations are compared with analytic and/or 3D finite-difference time-domain solutions and are used to confirm the accuracy and efficiency of the 3D FETD algorithm.
引用
收藏
页码:F115 / F126
页数:12
相关论文
共 50 条
  • [21] Spectral-element modeling of the time-domain electromagnetic field in 3D geophysical anisotropic media
    Beatriz Valdés-Moreno
    Jonas D. De Basabe
    Marco A. Pérez-Flores
    Computational Geosciences, 2025, 29 (1)
  • [22] FINITE-ELEMENT ELECTRIC-FIELD ANALYSIS OF IMPLANTED ELECTRODES
    WALKER, CF
    SEPULVEDA, NG
    RUSINKO, JB
    MOLLIGAN, D
    FEDERATION PROCEEDINGS, 1982, 41 (05) : 1699 - 1699
  • [23] Mass lumping techniques combined with 3D Time-domain Finite-element Method for the vector wave equation
    Ye, Z. B.
    Du, L.
    Fan, Z. H.
    Chen, R. S.
    2008 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOLS 1-4, 2008, : 1307 - 1310
  • [24] A 3-D spectral-element time-domain method for electromagnetic simulation
    Lee, Joon-Ho
    Liu, Qing Fluo
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2007, 55 (05) : 983 - 991
  • [25] Applicability of an explicit time-domain finite-element method on room acoustics simulation
    Okuzono, Takeshi
    Otsuru, Toru
    Sakagami, Kimihiro
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2015, 36 (04) : 377 - 380
  • [26] An Explicit Time-Domain Finite-Element Boundary Integral Method for Analysis of Electromagnetic Scattering
    Dong, Ming
    Chen, Liang
    Jiang, Lijun
    Li, Ping
    Bagci, Hakan
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (07) : 6089 - 6094
  • [27] An Alternative Explicit and Unconditionally Stable Time-Domain Finite-Element Method for Electromagnetic Analysis
    Lee, Woochan
    Jiao, Dan
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2018, 3 : 16 - 28
  • [28] 3D finite-element simulation of material flow
    Biba, Nikolai
    Stebounov, Sergei
    Metallurgia, 2002, 69 (02):
  • [29] A Nonspurious 3-D Vector Discontinuous Galerkin Finite-Element Time-Domain Method
    Chen, Jiefu
    Liu, Qing Huo
    Chai, Mei
    Mix, Jason A.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (01) : 1 - 3
  • [30] 3D FINITE-ELEMENT INVESTIGATION OF THE MAGNETIC-FIELD OUTSIDE ELECTROMAGNETIC DEVICES
    BELHOUCINE, B
    FOGGIA, A
    MEUNIER, G
    BELHOUCINE, B
    BESSEAU, M
    KERMORGANT, H
    BRUNOTTE, X
    IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (05) : 2964 - 2967