Quantum mechanical four-dimensional non-polarizing beamsplitter

被引:0
|
作者
Kryvobok, Artem [1 ]
Kathman, Alan D. [1 ]
机构
[1] Teledyne FLIR LLC, 1049 Camino Rios Thousand, Oaks, CA 91360 USA
关键词
Beamsplitter; Quantum optics; Quantum computing; Interferometry;
D O I
10.1007/s40509-021-00256-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some quantum optics researchers might not realize that classical electromagnetism predicts a pi phase shift between S- and P-polarized reflection and might think the reflection coefficients of the transverse modes are independent, or that such a phase shift has no measurable consequences. In this paper, we discuss theoretical grounds to define elements of a 4x4 matrix to represent the beamsplitter, accurately accounting for transverse polarization modes and phase relations between them. We also provide experimental evidence confirming this matrix representation. From a scientific point of view, the paper addresses a non-trivial equivalence between the classical fields Fresnel formalism and the canonical commutation relations of the quantized photonic fields. That the formalism can be readily verified with a simple experiment provides further benefit. The beamsplitter expression derived can be applied in the field of quantum computing.
引用
收藏
页码:55 / 70
页数:16
相关论文
共 50 条
  • [31] Polarizing and non-polarizing mirrors for the hydrogen Lyman-α radiation at 121.6 nm
    Bridou, F.
    Cuniot-Ponsard, M.
    Desvignes, J. -M.
    Gottwald, A.
    Kroth, U.
    Richter, M.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (03): : 641 - 649
  • [32] Polarizing and non-polarizing mirrors for the hydrogen Lyman-α radiation at 121.6 nm
    F. Bridou
    M. Cuniot-Ponsard
    J.-M. Desvignes
    A. Gottwald
    U. Kroth
    M. Richter
    Applied Physics A, 2011, 102 : 641 - 649
  • [33] A four-dimensional approach to quantum field theories
    R. Pittau
    Journal of High Energy Physics, 2012
  • [34] Gauge theory on a four-dimensional quantum space
    El Baz, M.
    MODERN PHYSICS LETTERS A, 2006, 21 (30) : 2323 - 2330
  • [35] Photonic quantum walks with four-dimensional coins
    Lorz, Lennart
    Meyer-Scott, Evan
    Nitsche, Thomas
    Potocek, Vaclav
    Gabris, Aurel
    Barkhofen, Sonja
    Jex, Igor
    Silberhorn, Christine
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [36] A four-dimensional approach to quantum field theories
    Pittau, R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (11):
  • [37] A four-dimensional generalization of the quantum Hall effect
    Zhang, SC
    Hu, JP
    SCIENCE, 2001, 294 (5543) : 823 - 828
  • [38] Four-dimensional quantum and two-dimensional classical mechanical study of molecule-surface interactions
    Adhikari, S
    Billing, GD
    JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (08): : 3884 - 3889
  • [39] Quantum decoherence in a four-dimensional black hole background
    Ellis, J
    Mavromatos, NE
    Winstanley, E
    Nanopoulos, DV
    MODERN PHYSICS LETTERS A, 1997, 12 (04) : 243 - 256
  • [40] Theory of four-dimensional fractional quantum Hall states
    Chern, Chyh-Hong
    ANNALS OF PHYSICS, 2007, 322 (10) : 2485 - 2492