IMAGE RETRIEVAL WITH FEATURE SELECTION AND RELEVANCE FEEDBACK

被引:14
|
作者
Sun, Yu [1 ]
Bhanu, Bir [1 ]
机构
[1] Univ Calif Riverside, Ctr Res Intelligent Syst, Riverside, CA 92521 USA
关键词
CBIR; Relevance Feedback; Feature Selection;
D O I
10.1109/ICIP.2010.5651984
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new content based image retrieval (CBIR) system combined with relevance feedback and the online feature selection procedures. A measure of inconsistency from relevance feedback is explicitly used as a new semantic criterion to guide the feature selection. By integrating the user feedback information, the feature selection is able to bridge the gap between low-level visual features and high-level semantic information, leading to the improved image retrieval accuracy. Experimental results show that the proposed method obtains higher retrieval accuracy than a commonly used approach.
引用
收藏
页码:3209 / 3212
页数:4
相关论文
共 50 条
  • [11] Joint semantics and feature based image retrieval using relevance feedback
    Lu, Y
    Zhang, HJ
    Liu, WY
    Hu, CH
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2003, 5 (03) : 339 - 347
  • [12] Relevance feedback for keyword and visual feature-based image retrieval
    Jing, F
    Li, MJ
    Zhang, HJ
    Zhang, B
    [J]. IMAGE AND VIDEO RETRIEVAL, PROCEEDINGS, 2004, 3115 : 438 - 447
  • [13] Dynamic Feature Weights with Relevance Feedback in Content-Based Image Retrieval
    Guldogan, Esin
    Gabbouj, Moncef
    [J]. 2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 56 - 59
  • [14] Multi-feature image relevance feedback retrieval based on color and texture
    Hu Xuelong
    Gao Yan
    Zhang Yuhui
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOLS 1 - 3, 2006, : 560 - 564
  • [15] An image retrieval scheme with relevance feedback using feature reconstruction and SVM reclassification
    Wang, Xiang-Yang
    Li, Yong-Wei
    Yang, Hong-Ying
    Chen, Jing-Wei
    [J]. NEUROCOMPUTING, 2014, 127 : 214 - 230
  • [16] Feature selection for image retrieval
    Shen, XJ
    Wang, ZF
    [J]. ELECTRONICS LETTERS, 2006, 42 (06) : 337 - 338
  • [17] Adaptive relevance feedback model selection for content-based image retrieval
    Yin, P-Y
    Liu, Y-M
    [J]. IMAGING SCIENCE JOURNAL, 2010, 58 (01): : 37 - 48
  • [18] Sample selection strategies for relevance feedback in region-based image retrieval
    Ferecatu, M
    Crucianu, M
    Boujemaa, N
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 2, PROCEEDINGS, 2004, 3332 : 497 - 504
  • [19] Incorporate feature space transformation to content-based image retrieval with relevance feedback
    Luo, Xin
    Shishibori, Masami
    Ren, Fuji
    Kita, Kenji
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2007, 3 (05): : 1237 - 1250
  • [20] A fuzzy feature clustering with relevance feedback approach to content-based image retrieval
    Huang, YP
    Chang, TW
    Huang, CZ
    [J]. VECIMS'03: 2003 IEEE INTERNATIONAL SYMPOSIUM ON VIRTUAL ENVIRONMENTS, HUMAN-COMPUTER INTERFACES AND MEASUREMENT SYSTEMS, 2003, : 57 - 62