Spatio-temporal analysis of wind resource in the Iberian Peninsula with data-coupled clustering

被引:13
|
作者
Chidean, Mihaela I. [1 ]
Caamano, Antonio J. [1 ]
Ramiro-Bargueno, Julio [1 ]
Casanova-Mateo, Carlos [2 ]
Salcedo-Sanz, Sancho [3 ]
机构
[1] Univ Rey Juan Carlos, Dept Signal Theory & Commun, Madrid, Spain
[2] Univ Politecn Madrid, Dept Civil Engn Construct Infrastruct & Transport, Madrid, Spain
[3] Univ Alcala, Dept Signal Proc & Commun, Madrid, Spain
来源
关键词
Wind resource; Wind energy production; Spatio-temporal analysis; SODCC clustering; SPEED;
D O I
10.1016/j.rser.2017.06.075
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper a spatio-temporal analysis of wind power resource in the Iberian Peninsula is presented. The study uses the Second-Order Data-Coupled Clustering (SODCC) algorithm over reanalysis data in the for the period 1979 - 2014. Several characteristics of the method are detailed, such as the data-coupled clustering approach of SODCC, that ensures the non-singularity of the signal subspace within each cluster. The performance of the proposed approach and specific results obtained have been discussed in a case study in the Iberian Peninsula. In these results it is possible to identify different spatio-temporal patterns of the wind data statistics depending on the initialization year. Moreover, this work also shows that there is a close relationship between these spatio-temporal patterns with the wind energy production of the area under study, so the proposed analysis can be extended to wind farms efficiency production at the time scales considered.
引用
收藏
页码:2684 / 2694
页数:11
相关论文
共 50 条
  • [31] Spatio-temporal changes (1956-2013) of coastal ecosystems in Southern Iberian Peninsula (Spain)
    Diez-Garretas, Blanca
    Comino, Olga
    Perena, Jaime
    Asensi, Alfredo
    [J]. MEDITERRANEAN BOTANY, 2019, 40 (01): : 111 - 119
  • [32] The amphipod community as a bioindicator in Algeciras bay (southern Iberian peninsula) based on a spatio-temporal distribution
    Conradi, M
    LopezGonzalez, PJ
    GarciaGomez, C
    [J]. MARINE ECOLOGY-PUBBLICAZIONI DELLA STAZIONE ZOOLOGICA DI NAPOLI I, 1997, 18 (02): : 97 - 111
  • [33] Bayesian Spatio-temporal Hierarchical Modeling in Wind Speed Data
    Lee, Chee Nian
    Ong, Hong Choon
    [J]. PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [34] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [35] Data analysis and processing for spatio-temporal forecasting
    Lee, Hyoungwoo
    Choo, Jaegul
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 737 - 739
  • [36] Multiscale recurrence analysis of spatio-temporal data
    Riedl, M.
    Marwan, N.
    Kurths, J.
    [J]. CHAOS, 2015, 25 (12)
  • [37] Spatio-Temporal Analysis for Smart City Data
    Bermudez-Edo, Maria
    Barnaghi, Payam
    [J]. COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1841 - 1845
  • [38] Spatio-temporal clustering of epileptic ECOG
    Hegde, Anant
    Erdogmus, Deniz
    Principe, Jose C.
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 4199 - 4202
  • [39] Fuzzy cluster analysis of spatio-temporal data
    Liu, ZJ
    George, R
    [J]. COMPUTER AND INFORMATION SCIENCES - ISCIS 2003, 2003, 2869 : 984 - 991
  • [40] Interactive exploratory analysis of spatio-temporal data
    Dreesman, JM
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 407 - 412