On the stability of equilibria in two-degrees-of-freedom Hamiltonian systems under resonances

被引:16
|
作者
Elipe, A [1 ]
Lanchares, V
Pascual, AI
机构
[1] Univ Zaragoza, Grp Mecan Espacial, E-50009 Zaragoza, Spain
[2] Univ La Rioja, Dept Matemat & Comp, Logrono 26004, Spain
关键词
nonlinear stability; normal forms;
D O I
10.1007/s00332-004-0674-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of stability of equilibrium points in Hamiltonian systems of two degrees of freedom under resonances. Determining the stability or instability is based on a geometrical criterion based on how two surfaces, related with the normal form, intersect one another. The equivalence of this criterion with a result of Cabral and Meyer is proved. With this geometrical procedure, the hypothesis may be extended to more general cases.
引用
收藏
页码:305 / 319
页数:15
相关论文
共 50 条
  • [31] Fuzzy adaptation two-degrees-of-freedom PID control
    Wang, WH
    Zhang, JG
    Liu, XX
    [J]. PROCEEDINGS OF THE 4TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-4, 2002, : 734 - 737
  • [32] On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom
    Eleonsky, VM
    Korolev, VG
    Kulagin, NE
    [J]. CHAOS, 1997, 7 (04) : 710 - 730
  • [33] Two degrees of freedom quasi-bi-Hamiltonian systems
    Brouzet, R
    Caboz, R
    Rabenivo, J
    Ravoson, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09): : 2069 - 2076
  • [34] Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom
    Bolotin, S. V.
    Kozlov, V. V.
    [J]. IZVESTIYA MATHEMATICS, 2017, 81 (04) : 671 - 687
  • [35] Reversible maps in two-degrees of freedom Hamiltonian systems
    Zare, K
    Tanikawa, K
    [J]. CHAOS, 2002, 12 (03) : 699 - 705
  • [36] A Two-Degrees-of-Freedom System for Wheel Traction Applications
    Roggia, Sara
    Cupertino, Francesco
    Gerada, Chris
    Galea, Michael
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (06) : 4483 - 4491
  • [37] Nonlinear oscillations of an elastic two-degrees-of-freedom pendulum
    Awrejcewicz, Jan
    Petrov, Alexander G.
    [J]. NONLINEAR DYNAMICS, 2008, 53 (1-2) : 19 - 30
  • [38] Optimal reference processing in two-degrees-of-freedom control
    Vilanova, R.
    Serra, I.
    Pedret, C.
    Moreno, R.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (05): : 1322 - 1328
  • [39] Nonlinear oscillations of an elastic two-degrees-of-freedom pendulum
    Jan Awrejcewicz
    Alexander G. Petrov
    [J]. Nonlinear Dynamics, 2008, 53 : 19 - 30
  • [40] Two-Degrees-of-Freedom (2-DoF) applied to the "Benchmark" systems for PID controllers
    Alfaro, V. M.
    Arrieta, O.
    Vilanova, R.
    [J]. REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2009, 6 (02): : 59 - +