Bayesian analysis of skew-normal independent linear mixed models with heterogeneity in the random-effects population

被引:23
|
作者
Barbosa Cabral, Celso Romulo [2 ]
Lachos, Victor Hugo [1 ]
Madruga, Maria Regina [3 ]
机构
[1] Univ Estadual Campinas, Dept Estat, IMECC, BR-13083859 Sao Paulo, Brazil
[2] Univ Fed Amazonas, Dept Estat, Manaus, Amazonas, Brazil
[3] Fed Univ Para, Fac Estat, BR-66059 Belem, Para, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bayesian estimation; Finite mixtures; Linear mixed models; MCMC; Skew-normal distribution; FINITE MIXTURES; T DISTRIBUTION; INFERENCE; DISTRIBUTIONS; ALGORITHMS; NUMBER;
D O I
10.1016/j.jspi.2011.07.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a new class of models to fit longitudinal data, obtained with a suitable modification of the classical linear mixed-effects model. For each sample unit, the joint distribution of the random effect and the random error is a finite mixture of scale mixtures of multivariate skew-normal distributions. This extension allows us to model the data in a more flexible way, taking into account skewness, multimodality and discrepant observations at the same time. The scale mixtures of skew-normal form an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal, skew-Student-t, skew-slash and the skew-contaminated normal distributions as special cases, being a flexible alternative to the use of the corresponding symmetric distributions in this type of models. A simple efficient MCMC Gibbs-type algorithm for posterior Bayesian inference is employed. In order to illustrate the usefulness of the proposed methodology, two artificial and two real data sets are analyzed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 200
页数:20
相关论文
共 50 条
  • [41] Nonlinear mixed-effects models with scale mixture of skew-normal distributions
    Alves Pereira, Marcos Antonio
    Russo, Cibele Maria
    [J]. JOURNAL OF APPLIED STATISTICS, 2019, 46 (09) : 1602 - 1620
  • [42] Bayesian local influence analysis of skew-normal spatial dynamic panel data models
    Ju, Yuanyuan
    Tang, Niansheng
    Li, Xiaoxia
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (12) : 2342 - 2364
  • [43] Bayesian analysis of generalized linear mixed models with spatial correlated and unrestricted skew normal errors
    Farzammehr, Mohadeseh Alsadat
    Mohammadzadeh, Mohsen
    Zadkarami, Mohammad Reza
    McLachlan, Geoffrey J.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (24) : 8476 - 8498
  • [44] Approximate Inferences for Nonlinear Mixed Effects Models with Scale Mixtures of Skew-Normal Distributions
    Schumacher, Fernanda L.
    Dey, Dipak K.
    Lachos, Victor H.
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (03)
  • [45] Bayesian Inference for Skew-Normal Mixture Models With Left-Censoring
    Dagne, Getachew A.
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2013, 23 (05) : 1023 - 1041
  • [46] Scale mixture of skew-normal linear mixed models with within-subject serial dependence
    Schumacher, Fernanda L.
    Lachos, Victor H.
    Matos, Larissa A.
    [J]. STATISTICS IN MEDICINE, 2021, 40 (07) : 1790 - 1810
  • [47] Approximate Inferences for Nonlinear Mixed Effects Models with Scale Mixtures of Skew-Normal Distributions
    Fernanda L. Schumacher
    Dipak K. Dey
    Victor H. Lachos
    [J]. Journal of Statistical Theory and Practice, 2021, 15
  • [48] Skew-normal factor analysis models with incomplete data
    Liu, M.
    Lin, T. I.
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (04) : 789 - 805
  • [49] Spatial skew-normal/independent models for nonrandomly missing clustered data
    Bandyopadhyay, Dipankar
    Prates, Marcos O.
    Zhao, Xiaoyue
    Lachos, Victor H.
    [J]. STATISTICS IN MEDICINE, 2021, 40 (13) : 3085 - 3105
  • [50] Diagnostics analysis for skew-normal linear regression models: Applications to a quality of life dataset
    Ferreira, Clecio da Silva
    Vilca, Filidor
    Bolfarine, Heleno
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2018, 32 (03) : 525 - 544