Bayesian analysis of skew-normal independent linear mixed models with heterogeneity in the random-effects population

被引:23
|
作者
Barbosa Cabral, Celso Romulo [2 ]
Lachos, Victor Hugo [1 ]
Madruga, Maria Regina [3 ]
机构
[1] Univ Estadual Campinas, Dept Estat, IMECC, BR-13083859 Sao Paulo, Brazil
[2] Univ Fed Amazonas, Dept Estat, Manaus, Amazonas, Brazil
[3] Fed Univ Para, Fac Estat, BR-66059 Belem, Para, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bayesian estimation; Finite mixtures; Linear mixed models; MCMC; Skew-normal distribution; FINITE MIXTURES; T DISTRIBUTION; INFERENCE; DISTRIBUTIONS; ALGORITHMS; NUMBER;
D O I
10.1016/j.jspi.2011.07.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a new class of models to fit longitudinal data, obtained with a suitable modification of the classical linear mixed-effects model. For each sample unit, the joint distribution of the random effect and the random error is a finite mixture of scale mixtures of multivariate skew-normal distributions. This extension allows us to model the data in a more flexible way, taking into account skewness, multimodality and discrepant observations at the same time. The scale mixtures of skew-normal form an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal, skew-Student-t, skew-slash and the skew-contaminated normal distributions as special cases, being a flexible alternative to the use of the corresponding symmetric distributions in this type of models. A simple efficient MCMC Gibbs-type algorithm for posterior Bayesian inference is employed. In order to illustrate the usefulness of the proposed methodology, two artificial and two real data sets are analyzed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 200
页数:20
相关论文
共 50 条
  • [1] Inferences in Linear Mixed Models with Skew-normal Random Effects
    Ren Dao YE
    Tong Hui WANG
    [J]. Acta Mathematica Sinica,English Series, 2015, (04) : 576 - 594
  • [2] Inferences in linear mixed models with skew-normal random effects
    Ye, Ren Dao
    Wang, Tong Hui
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (04) : 576 - 594
  • [3] Inferences in linear mixed models with skew-normal random effects
    Ren Dao Ye
    Tong Hui Wang
    [J]. Acta Mathematica Sinica, English Series, 2015, 31 : 576 - 594
  • [4] Inferences in Linear Mixed Models with Skew-normal Random Effects
    Ren Dao YE
    Tong Hui WANG
    [J]. Acta Mathematica Sinica, 2015, 31 (04) - 594
  • [5] Bayesian inference for skew-normal linear mixed models
    Arellano-Valle, R. B.
    Bolfarine, H.
    Lachos, V. H.
    [J]. JOURNAL OF APPLIED STATISTICS, 2007, 34 (06) : 663 - 682
  • [6] Robust linear mixed models with skew-normal independent distributions from a Bayesian perspective
    Lachos, Victor H.
    Dey, Dipak K.
    Cancho, Vicente G.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (12) : 4098 - 4110
  • [7] Bayesian quantile regression for skew-normal linear mixed models
    Aghamohammadi, A.
    Meshkani, M. R.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 10953 - 10972
  • [8] Influence analyses of skew-normal/independent linear mixed models
    Zeller, Camila B.
    Labra, Filidor V.
    Lachos, Victor H.
    Balakrishnan, N.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (05) : 1266 - 1280
  • [9] Bayesian analysis for multivariate skew-normal reproductive dispersion random effects models
    Zhao, Yuan-Ying
    Duan, Xing-De
    Li, De-Wang
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MATHEMATICS AND ARTIFICIAL INTELLIGENCE (ICMAI 2018), 2018, : 15 - 20
  • [10] Estimation and prediction in linear mixed models with skew-normal random effects for longitudinal data
    Lin, Tsung I.
    Lee, Jack C.
    [J]. STATISTICS IN MEDICINE, 2008, 27 (09) : 1490 - 1507