Dynamic testing of nonlinear vibrating structures using nonlinear normal modes

被引:135
|
作者
Peeters, M. [1 ]
Kerschen, G. [1 ]
Golinval, J. C. [1 ]
机构
[1] Univ Liege, Struct Dynam Res Grp, Dept Aerosp & Mech Engn, B-4000 Liege, Belgium
关键词
MODAL IDENTIFICATION; WAVELET TRANSFORM; GEOMETRICAL NONLINEARITY; FORCE APPROPRIATION; PART II; SYSTEMS;
D O I
10.1016/j.jsv.2010.08.028
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Modal testing and analysis is well-established for linear systems. The objective of this paper is to progress toward a practical experimental modal analysis (EMA) methodology of nonlinear mechanical structures. In this context, nonlinear normal modes (NNMs) offer a solid theoretical and mathematical tool for interpreting a wide class of nonlinear dynamical phenomena, yet they have a clear and simple conceptual relation to the classical linear normal modes (LNMs). A nonlinear extension of force appropriation techniques is developed in this study in order to isolate one single NNM during the experiments. With the help of time-frequency analysis, the energy dependence of NNM modal curves and their frequencies of oscillation are then extracted from the time series. The proposed methodology is demonstrated using two numerical benchmarks, a two-degree-of-freedom system and a planar cantilever beam with a cubic spring at its free end. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:486 / 509
页数:24
相关论文
共 50 条
  • [41] USAGE OF NONLINEAR NORMAL MODES IN DYNAMICS
    Byrtus, M.
    ENGINEERING MECHANICS 2011, 2011, : 71 - 74
  • [42] Stability of strongly nonlinear normal modes
    Recktenwald, Geoffrey
    Rand, Richard
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (07) : 1128 - 1132
  • [43] Identifying the significance of nonlinear normal modes
    Hill, T. L.
    Cammarano, A.
    Neild, S. A.
    Barton, D. A. W.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2199):
  • [44] Nonlinear normal modes of a cantilever beam
    Nayfeh, AH
    Chin, C
    Nayfeh, SA
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1995, 117 (04): : 477 - 481
  • [45] Nonlinear normal modes for damage detection
    Lacarbonara, Walter
    Carboni, Biagio
    Quaranta, Giuseppe
    MECCANICA, 2016, 51 (11) : 2629 - 2645
  • [46] A spectral characterization of nonlinear normal modes
    Cirillo, G. I.
    Mauroy, A.
    Renson, L.
    Kerschen, G.
    Sepulchre, R.
    JOURNAL OF SOUND AND VIBRATION, 2016, 377 : 284 - 301
  • [47] Nonlinear normal modes in pendulum systems
    A. A. Klimenko
    Y. V. Mikhlin
    J. Awrejcewicz
    Nonlinear Dynamics, 2012, 70 : 797 - 813
  • [48] Nonlinear normal modes in pendulum systems
    Klimenko, A. A.
    Mikhlin, Y. V.
    Awrejcewicz, J.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 797 - 813
  • [49] Nonlinear vibration analysis of hyperelastic and dielectric microbeams with a control parameter using nonlinear normal modes
    Farvandi, Ahad
    Mohammadi, Ardeshir Karami
    NONLINEAR DYNAMICS, 2025, 113 (03) : 2045 - 2059
  • [50] Normalising Flows and Nonlinear Normal Modes
    Bull, L. A.
    Gardner, P. A.
    Dervilis, N.
    Worden, K.
    IFAC PAPERSONLINE, 2021, 54 (07): : 655 - 660