Combining textual and visual cues for content-based image retrieval on the World Wide Web

被引:65
|
作者
La Cascia, M [1 ]
Sethi, S [1 ]
Sclaroff, S [1 ]
机构
[1] Boston Univ, Dept Comp Sci, Image & Video Comp Grp, Boston, MA 02215 USA
关键词
D O I
10.1109/IVL.1998.694480
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A system is proposed that combines textual and visual statistics in a single index vector for content-based search of a WWW image database. Textual statistics are captured in vector form using latent semantic indexing (LSI) based on text in the containing HTML document. Visual statistics are captured in vector form using color and orientation histograms. By using an integrated approach, it becomes possible to take advantage of possible statistical couplings between the content of the document (latent semantic content) and the contents of images (visual statistics). The combined approach allows improved performance ii conducting content-based search. Seal-ch performance experiments are reported for a database containing 100,000 images collected from the WWW.
引用
收藏
页码:24 / 28
页数:5
相关论文
共 50 条
  • [41] Unsupervised Visual Hashing with Semantic Assistant for Content-Based Image Retrieval
    Zhu, Lei
    Shen, Jialie
    Xie, Liang
    Cheng, Zhiyong
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (02) : 472 - 486
  • [42] Content-based image retrieval using local visual attention feature
    Yang, Hong-Ying
    Li, Yong-Wei
    Li, Wei-Yi
    Wang, Xiang-Yang
    Yang, Fang-Yu
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (06) : 1308 - 1323
  • [43] Content-based image retrieval using computational visual attention model
    Liu, Guang-Hai
    Yang, Jing-Yu
    Li, ZuoYong
    [J]. PATTERN RECOGNITION, 2015, 48 (08) : 2554 - 2566
  • [44] Content-based Image Retrieval using Visual Attention Point Features
    Wang, Xiang-Yang
    Li, Yong-Wei
    Niu, Pan-Pan
    Yang, Hong-Ying
    Li, Dong-Ming
    [J]. FUNDAMENTA INFORMATICAE, 2014, 135 (03) : 309 - 329
  • [45] A Novel Visual Word Assignment Model for Content-Based Image Retrieval
    Mukherjee, Anindita
    Chakraborty, Soman
    Sil, Jaya
    Chowdhury, Ananda S.
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2016, VOL 1, 2017, 459 : 79 - 87
  • [46] Content-based image retrieval: Colorfulness and Depth visual perception quantification
    Vilfroy, Solene
    Urruty, Thierry
    Carre, Philippe
    Bombrun, Lionel
    Bour, Arnaud
    [J]. 2021 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2021, : 77 - 82
  • [47] A Method For Content-Based Image Retrieval Using Visual Attention Model
    Mohammadpour, Mostafa
    Mozaffari, Saeed
    [J]. 2015 7TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2015,
  • [48] A Content-Based Visual Information Retrieval Approach for Automated Image Annotation
    Senthil, Karthik
    Arun, Abhi
    Sowmya, Kamath S.
    [J]. PROGRESS IN INTELLIGENT COMPUTING TECHNIQUES: THEORY, PRACTICE, AND APPLICATIONS, VOL 1, 2018, 518 : 69 - 80
  • [49] Supporting visual query expression in a content-based image retrieval environment
    Venters, CC
    [J]. HUMAN-COMPUTER INTERACTION - INTERACT '99, 1999, : 698 - 700
  • [50] HIERARCHICAL CONTENT-BASED IMAGE RETRIEVAL
    俞勇
    施鹏飞
    [J]. Journal of Shanghai Jiaotong University(Science), 1999, (01) : 9 - 13