Combining textual and visual cues for content-based image retrieval on the World Wide Web

被引:65
|
作者
La Cascia, M [1 ]
Sethi, S [1 ]
Sclaroff, S [1 ]
机构
[1] Boston Univ, Dept Comp Sci, Image & Video Comp Grp, Boston, MA 02215 USA
关键词
D O I
10.1109/IVL.1998.694480
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A system is proposed that combines textual and visual statistics in a single index vector for content-based search of a WWW image database. Textual statistics are captured in vector form using latent semantic indexing (LSI) based on text in the containing HTML document. Visual statistics are captured in vector form using color and orientation histograms. By using an integrated approach, it becomes possible to take advantage of possible statistical couplings between the content of the document (latent semantic content) and the contents of images (visual statistics). The combined approach allows improved performance ii conducting content-based search. Seal-ch performance experiments are reported for a database containing 100,000 images collected from the WWW.
引用
收藏
页码:24 / 28
页数:5
相关论文
共 50 条
  • [1] Unifying textual and visual cues for content-based image retrieval on the World Wide Web
    Sclaroff, S
    La Cascia, M
    Sethi, S
    Taycher, L
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 1999, 75 (1-2) : 86 - 98
  • [2] FIRE in ImageCLEF 2005: Combining content-based image retrieval with textual information retrieval
    Deselaers, Thomas
    Weyand, Tobias
    Keysers, Daniel
    Macherey, Wolfgang
    Ney, Hermann
    [J]. ACCESSING MULTILINGUAL INFORMATION REPOSITORIES, 2006, 4022 : 652 - 661
  • [3] Content-based image retrieval in the world-wide-web - A web-agent for fetching portraits
    Munkelt, O
    Kaufmann, O
    Eckstein, W
    [J]. STORAGE AND RETRIEVAL FOR IMAGE AND VIDEO DATABASES V, 1997, 3022 : 408 - 416
  • [4] Methods for Combining Content-Based and Textual-Based Approaches in Medical Image Retrieval
    Torjmen, Mouna
    Pinel-Sauvagnat, Karen
    Boughanem, Mohand
    [J]. EVALUATING SYSTEMS FOR MULTILINGUAL AND MULTIMODAL INFORMATION ACCESS, 2009, 5706 : 691 - 695
  • [5] Hybrid textual-visual relevance learning for content-based image retrieval
    Cui, Chaoran
    Lin, Peiguang
    Nie, Xiushan
    Yin, Yilong
    Zhu, Qingfeng
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 48 : 367 - 374
  • [6] ImageRover: A content-based image browser for the World Wide Web
    Sclaroff, S
    Taycher, L
    LaCascia, M
    [J]. IEEE WORKSHOP ON CONTENT-BASED ACCESS OF IMAGE AND VIDEO LIBRARIES, PROCEEDINGS, 1997, : 2 - 9
  • [7] Development of content-based trademark retrieval system on the World Wide Web
    Kim, YS
    Kim, YS
    Kim, WY
    Kim, MJ
    [J]. ETRI JOURNAL, 1999, 21 (01) : 39 - 53
  • [8] WebGuard: A Web filtering engine combining textual, structural, and visual content-based analysis
    Hammami, M
    Chahir, Y
    Chen, LM
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2006, 18 (02) : 272 - 284
  • [9] WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval
    Tabatabaei, Zahra
    Wang, Yuandou
    Colomer, Adrian
    Oliver Moll, Javier
    Zhao, Zhiming
    Naranjo, Valery
    [J]. BIOENGINEERING-BASEL, 2023, 10 (10):
  • [10] Combining similarity measures in content-based image retrieval
    Arevalillo-Herraez, Miguel
    Domingo, Juan
    Ferri, Francesc J.
    [J]. PATTERN RECOGNITION LETTERS, 2008, 29 (16) : 2174 - 2181