High-order finite difference schemes for the solution of second-order BVPs

被引:35
|
作者
Amodio, P
Sgura, I
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Lecce, Dipartimento Matemat, I-73100 Lecce, Italy
关键词
finite difference schemes; boundary value methods; two-point boundary value problems; conditioning analysis;
D O I
10.1016/j.cam.2004.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce new methods in the class of boundary value methods (BVMs) to solve boundary value problems (BVPs) for a second-order ODE. These formulae correspond to the high-order generalizations of classical finite difference schemes for the first and second derivatives. In this research, we carry out the analysis of the conditioning and of the time-reversal symmetry of the discrete solution for a linear convection-diffusion ODE problem. We present numerical examples emphasizing the good convergence behavior of the new schemes. Finally, we show how these methods can be applied in several space dimensions on a uniform mesh. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 76
页数:18
相关论文
共 50 条
  • [1] A New Family of High-Order Difference Schemes for the Solution of Second Order Boundary Value Problems
    Bisheh-Niasar, Morteza
    Saadatmandi, Abbas
    Akrami-Arani, Mostafa
    [J]. IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 9 (03): : 187 - 199
  • [2] On the numerical solution of hyperbolic IBVP with high-order stable finite difference schemes
    Ashyralyev, Allaberen
    Yildirim, Ozgur
    [J]. BOUNDARY VALUE PROBLEMS, 2013,
  • [3] High-order finite difference schemes for incompressible flows
    Fadel, H.
    Agouzoul, M.
    Jimack, P. K.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (09) : 1050 - 1070
  • [4] On the numerical solution of hyperbolic IBVP with high-order stable finite difference schemes
    Allaberen Ashyralyev
    Ozgur Yildirim
    [J]. Boundary Value Problems, 2013
  • [5] Numerical Solution of Second-Order Linear Multidimensional Hyperbolic Telegraph Equation Using High-Order Compact Finite Difference Methods
    Hashemi, Azam Sadat
    Heydari, Mohammad
    Loghmani, Ghasem Barid
    [J]. IRANIAN JOURNAL OF SCIENCE, 2024, 48 (05) : 1211 - 1241
  • [6] High-order finite difference schemes for the solution of the generalized Burgers-Fisher equation
    Sari, Murat
    Gurarslan, Gurhan
    Zeytinoglu, Asuman
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (08) : 1296 - 1308
  • [7] An overview of high-order finite difference schemes for computational aeroacoustics
    De Roeck, W.
    Desmet, W.
    Baelmans, M.
    Sas, P.
    [J]. Proceedings of ISMA 2004: International Conference on Noise and Vibration Engineering, Vols 1-8, 2005, : 353 - 368
  • [8] On second-order mimetic and conservative finite-difference discretization schemes
    Rojas, S.
    Guevara-Jordan, J. M.
    [J]. REVISTA MEXICANA DE FISICA E, 2008, 54 (02): : 141 - 145
  • [9] Positive solutions for semipositone BVPs of second-order difference equations'
    Bai, Dingyong
    Xu, Yuantong
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2008, 39 (01): : 59 - 68
  • [10] HIGH-ORDER NARROW STENCIL FINITE-DIFFERENCE APPROXIMATIONS OF SECOND-ORDER DERIVATIVES INVOLVING VARIABLE COEFFICIENTS
    Kamakoti, Ramji
    Pantano, Carlos
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06): : 4222 - 4243