An overview of high-order finite difference schemes for computational aeroacoustics

被引:0
|
作者
De Roeck, W. [1 ]
Desmet, W. [1 ]
Baelmans, M. [1 ]
Sas, P. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, B-3001 Louvain, Belgium
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
One of the problems in computational aeroacoustics (CAA) is the large disparity between the length and time scales of the flow field, which may be the source of aerodynamically generated noise, and the ones of the resulting acoustic field. This is the main reason why numerical schemes, used to calculate the time- and space-derivatives, should exhibit a low dispersion and dissipation error. This paper focuses on the evaluation of a number of numerical schemes. The methods that are included, are a representative selection of the most commonly used numerical schemes in CAA. Four different spatial schemes are analyzed:(1) a standard 7-point central difference scheme,(2) a standard 9-point central difference scheme,(3) the Dispersion-Relation-Preserving scheme and (4) a 9-point optimized central difference scheme. For the time integration, six different Runge-Kutta methods are analyzed:(1) a standard 5-stage Runge-Kutta,(2) a 5-stage optimized Runge-Kutta,(3) the 5-stage low-dispersion low-dissipation Runge-Kutta,(4) a standard 6-stage Runge-Kutta,(5) a 6-stage optimized Runge-Kutta and (6) the 6-stage low-dispersion low-dissipation Runge-Kutta. The different methods are tested for a ID-propagation problem.
引用
收藏
页码:353 / 368
页数:16
相关论文
共 50 条
  • [1] WALL BOUNDARY-CONDITIONS FOR HIGH-ORDER FINITE-DIFFERENCE SCHEMES IN COMPUTATIONAL AEROACOUSTICS
    TAM, CKW
    DONG, Z
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1994, 6 (5-6) : 303 - 322
  • [2] A very fast high-order flux reconstruction for Finite Volume schemes for Computational Aeroacoustics
    Ramirez, Luis
    Fernandez-Fidalgo, Javier
    Paris, Jose
    Deligant, Michael
    Khelladi, Sofiane
    Nogueira, Xesus
    [J]. ENGINEERING WITH COMPUTERS, 2024,
  • [3] Applications of high-order optimized upwind schemes for computational aeroacoustics
    Zhuang, M
    Chen, RF
    [J]. AIAA JOURNAL, 2002, 40 (03) : 443 - 449
  • [4] Multidimensional optimization of finite difference schemes for Computational Aeroacoustics
    Sescu, Adrian
    Hixon, Ray
    Afjeh, Abdollah A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (09) : 4563 - 4588
  • [5] Cartesian boundary treatment of curved walls for high-order computational aeroacoustics schemes
    Kurbatskii, KA
    Tam, CKW
    [J]. AIAA JOURNAL, 1997, 35 (01) : 133 - 140
  • [6] Optimized boundary treatment of curved walls for high-order computational aeroacoustics schemes
    Bin, JH
    Cheong, CL
    Lee, SG
    [J]. AIAA JOURNAL, 2004, 42 (02) : 414 - 417
  • [7] Computational aero-acoustic using high-order finite-difference schemes
    Zhu, Wei Jun
    Shen, Wen Zhong
    Sorensen, Jens Norkaer
    [J]. SCIENCE OF MAKING TORQUE FROM WIND, 2007, 75
  • [8] High-order finite difference schemes for incompressible flows
    Fadel, H.
    Agouzoul, M.
    Jimack, P. K.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (09) : 1050 - 1070
  • [9] Interface Conditions of Finite Difference Compact Schemes for Computational Aeroacoustics
    Ikeda, Tomoaki
    Sumi, Takahiro
    Kurotaki, Takuji
    [J]. AIAA JOURNAL, 2009, 47 (11) : 2658 - 2665
  • [10] Optimised boundary compact finite difference schemes for computational aeroacoustics
    Kim, Jae Wook
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (01) : 995 - 1019