Simulation of cryogenic fracturing of rock-like materials using material point method

被引:7
|
作者
Wang, Guilin [1 ,2 ,3 ]
Sun, Fan [1 ]
Wang, Runqiu [1 ]
Cao, Tianci [1 ]
机构
[1] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
[2] Natl Joint Engn Res Ctr Geohazards Prevent Reserv, Chongqing 400045, Peoples R China
[3] Chongqing Univ, Minist Educ, Key Lab New Technol Construct Cities Mt Area, Chongqing 400045, Peoples R China
基金
中国国家自然科学基金;
关键词
MPM; Cryogenic fracturing; Thermomechanical coupling; Rock-like materials; CRACK-GROWTH; PROPAGATION; ENERGY; TEMPERATURE; BOUNDARY;
D O I
10.1016/j.jngse.2021.104300
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cryogenic fracturing is a relatively new technique used in gas and oil extraction. The material point method (MPM) combines the advantages of the Lagrangian and Eulerian methods and effectively solves problems involving fracture propagation and thermomechanical coupling. Hence, in this study, this method was applied to the simulation of cryogenic fracturing in rocks to reveal the mechanism of the process. First, the heat-conduction equation was discretized using the MPM. Subsequently, the thermomechanical-coupling problem was solved under the unified framework of the MPM. The discontinuous fields around the fracture were described, and fracture propagation was predicted using the phantom node method and interaction integral methods in the MPM. The results were then compared with finite-element simulation results to verify the feasibility of these methods. Finally, cryogenic fracturing simulations in the literature were examined, and the simulation results agreed well with the experimental results. Moreover, the distribution characteristics of thermal fractures were explained using the inhibitory interactions between fractures. The simulation results indicated that increasing the convective heat transfer coefficient results in a significant increase in the number of fractures.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] CREEP OF ROCK-LIKE MATERIALS
    CONSTANTINESCU, M
    CRISTESCU, N
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1983, 21 (01) : 45 - 49
  • [12] STRENGTH OF ROCK-LIKE MATERIALS
    LUNDBORG, N
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1968, 5 (05): : 427 - &
  • [13] An improved local coarsening method for discrete element simulation on cracking propagation in rock and rock-like materials
    Han, Guansheng
    Wang, Shaoqi
    Zhou, Yu
    Li, Bo
    Lv, Wenjun
    Chen, Weiqiang
    Tang, Qiongqiong
    COMPUTERS AND GEOTECHNICS, 2025, 179
  • [14] Simulations of crack propagation in rock-like materials using modified peridynamic method
    Ma Peng-fei
    Li Shu-chen
    Zhou Hui-ying
    Zhao Shi-sen
    ROCK AND SOIL MECHANICS, 2019, 40 (10) : 4111 - 4119
  • [15] Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials
    Nie, Xinxin
    Yin, Qian
    He, Manchao
    Wang, Qi
    Jing, Hongwen
    Zheng, Bowen
    Meng, Bo
    Deng, Tianci
    Jiang, Zheng
    Wu, Jiangyu
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (11) : 2417 - 2434
  • [16] Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials
    Xinxin Nie
    Qian Yin
    Manchao He
    Qi Wang
    Hongwen Jing
    Bowen Zheng
    Bo Meng
    Tianci Deng
    Zheng Jiang
    Jiangyu Wu
    International Journal of Minerals,Metallurgy and Materials, 2024, (11) : 2417 - 2434
  • [17] Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Materials
    H. Haeri
    A. Khaloo
    M. F. Marji
    Strength of Materials, 2015, 47 : 740 - 754
  • [18] EXPERIMENTAL AND NUMERICAL SIMULATION OF THE MICROCRACK COALESCENCE MECHANISM IN ROCK-LIKE MATERIALS
    Haeri, H.
    Khaloo, A.
    Marji, M. F.
    STRENGTH OF MATERIALS, 2015, 47 (05) : 740 - 754
  • [19] DEFORMABILITY OF ROCK-LIKE MATERIALS USING A SHARP CONE TEST
    LEITE, MH
    LADANYI, B
    GILL, DE
    GEOTECHNICAL TESTING JOURNAL, 1994, 17 (02): : 195 - 206
  • [20] EXPLOSION GENERATED FRACTURES IN ROCK AND ROCK-LIKE MATERIALS
    MOHANTY, B
    ENGINEERING FRACTURE MECHANICS, 1990, 35 (4-5) : 889 - &