Context-based Appearance Descriptor for 3D Human Pose estimation from Monocular Images

被引:10
|
作者
Sedai, S. [1 ]
Bennamoun, M. [1 ]
Huynh, D. [1 ]
机构
[1] Univ Western Australia, Sch Comp Sci & Software Engn, Crawley, WA 6009, Australia
关键词
human pose estimation; local feature descriptors; surveillance; performance evaluation;
D O I
10.1109/DICTA.2009.81
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a novel appearance descriptor for 3D human pose estimation from monocular images using a learning-based technique. Our image-descriptor is based on the intermediate local appearance descriptors that we design to encapsulate local appearance context and to be resilient to noise. We encode the image by the histogram of such local appearance context descriptors computed in an image to obtain the final image-descriptor for pose estimation. We name the final image-descriptor the Histogram of Local Appearance Context (HLAC). We then use Relevance Vector Machine (RVM) regression to learn the direct mapping between the proposed HLAC image-descriptor space and the 3D pose space. Given a test image, we first compute the HLAC descriptor and then input it to the trained regressor to obtain the final output pose in real time. We compared our approach with other methods using a synchronized video and 3D motion dataset. We compared our proposed HLAC image-descriptor with the Histogram of Shape Context and Histogram of SIFT like descriptors. The evaluation results show that HLAC descriptor outperforms both of them in the context of 3D Human pose estimation.
引用
收藏
页码:484 / 491
页数:8
相关论文
共 50 条
  • [41] Evaluating Shape and Appearance Descriptors for 3D Human Pose Estimation
    Sedai, S.
    Bennamoun, M.
    Huynh, D. Q.
    2011 6TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2011, : 293 - 298
  • [42] Ray3D: ray-based 3D human pose estimation for monocular absolute 3D localization
    Zhan, Yu
    Li, Fenghai
    Weng, Renliang
    Choi, Wongun
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 13106 - 13115
  • [43] SMPLer: Taming Transformers for Monocular 3D Human Shape and Pose Estimation
    Xu, Xiangyu
    Liu, Lijuan
    Yan, Shuicheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 3275 - 3289
  • [44] Evaluation of Human Pose Estimation in 3D with Monocular Camera for Clinical Application
    Carrasco-Plaza, Jose
    Cerda, Mauricio
    INTELLIGENT COMPUTING SYSTEMS (ISICS 2022), 2022, 1569 : 121 - 134
  • [45] Temporal Representation Learning on Monocular Videos for 3D Human Pose Estimation
    Honari, Sina
    Constantin, Victor
    Rhodin, Helge
    Salzmann, Mathieu
    Fua, Pascal
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6415 - 6427
  • [46] Human Pose Estimation from Monocular Images: A Comprehensive Survey
    Gong, Wenjuan
    Zhang, Xuena
    Gonzalez, Jordi
    Sobral, Andrews
    Bouwmans, Thierry
    Tu, Changhe
    Zahzah, El-hadi
    SENSORS, 2016, 16 (12)
  • [47] Personalized Graph Generation for Monocular 3D Human Pose and Shape Estimation
    Hu, Junxing
    Zhang, Hongwen
    Wang, Yunlong
    Ren, Min
    Sun, Zhenan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2399 - 2413
  • [48] Boosting Monocular 3D Human Pose Estimation With Part Aware Attention
    Xue, Youze
    Chen, Jiansheng
    Gu, Xiangming
    Ma, Huimin
    Ma, Hongbing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4278 - 4291
  • [49] Learning a 3D Human Pose Distance Metric from Geometric Pose Descriptor
    Chen, Cheng
    Zhuang, Yueting
    Nie, Feiping
    Yang, Yi
    Wu, Fei
    Xiao, Jun
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (11) : 1676 - 1689
  • [50] A 3D shape descriptor for human pose recovery
    Gond, Laetitia
    Sayd, Patrick
    Chateau, Thierry
    Dhome, Michel
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, PROCEEDINGS, 2008, 5098 : 370 - +