Target Detection in Remote Sensing Image Based on Object-and-Scene Context Constrained CNN

被引:9
|
作者
Cheng, Bei [1 ]
Li, Zhengzhou [1 ,2 ]
Xu, Bitong [1 ]
Dang, Chujia [1 ]
Deng, Jiaqi [1 ]
机构
[1] Chongqing Univ, Coll Microelect & Commun Engn, Chongqing 400044, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Key Lab Opt Engn, Chengdu 610209, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Remote sensing; Feature extraction; Context modeling; Semantics; Bayes methods; Airplanes; Object context constrain; remote sensing image; scene context constrain; target detection; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1109/LGRS.2021.3087597
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural network (CNN) model has made a great breakthrough in target detection in remote sensing image due to the excellent feature extraction capability. However, diverse scenes and complex contextual information of remote sensing image make these CNN models face big challenges. For example, the distinctiveness between the target and the context would be reduced greatly. This letter proposes an object-and-scene context constrained CNN method to detect target in remote sensing image. This method has two channels, namely, object context constrained channel and scene context constrained channel. The object context constrained channel uses recurrent neural network (RNN) to explore the contextual relationship between the target and the object, including feature relationship and position relationship. The scene context constrained channel adopts priori scene information and Bayesian criterion to infer the relationship between the scene and the target, and it make full use of the scene information to enhance the target detection performance. The experimental results on two datasets demonstrate the robustness and effectiveness of the proposed method.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] RBox-CNN: Rotated Bounding Box based CNN for Ship Detection in Remote Sensing Image
    Koo, Jamyoung
    Seo, Junghoon
    Jeon, Seunghyun
    Choe, Jeongyeol
    Jeon, Taegyun
    26TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2018), 2018, : 420 - 423
  • [42] An Improved YOLOX for Remote Sensing Image Object Detection
    Fang, Zhou
    He, Lin
    Li, Yingqi
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [43] Object based image analysis for remote sensing
    Blaschke, T.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) : 2 - 16
  • [44] A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection
    Gu, Yating
    Wang, Yantian
    Li, Yansheng
    APPLIED SCIENCES-BASEL, 2019, 9 (10):
  • [45] Object detection with multiple features in remote sensing image
    College of Electronic Science and Engineering, National Univ. of Defense Technology, Changsha 410073, China
    Guofang Keji Daxue Xuebao, 2007, 4 (72-76):
  • [46] Energy-Based CNN Pruning for Remote Sensing Scene Classification
    Lu, Yiheng
    Gong, Maoguo
    Hu, Zhuping
    Zhao, Wei
    Guan, Ziyu
    Zhang, Mingyang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [47] Small Target Detection in Remote Sensing Images Based on Global Context Information
    Li, Hongyan
    Xu, Baoqing
    Zhang, Ziyang
    Wang, Weifeng
    Guangxue Xuebao/Acta Optica Sinica, 2024, 44 (24):
  • [48] A Review: Remote Sensing Image Object Detection Algorithm Based on Deep Learning
    Bai, Chenshuai
    Bai, Xiaofeng
    Wu, Kaijun
    ELECTRONICS, 2023, 12 (24)
  • [49] Fusion based feature reinforcement component for remote sensing image object detection
    Zhu, Dongjun
    Xia, Shixiong
    Zhao, Jiaqi
    Zhou, Yong
    Niu, Qiang
    Yao, Rui
    Chen, Ying
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (47-48) : 34973 - 34992
  • [50] Fusion based feature reinforcement component for remote sensing image object detection
    Dongjun Zhu
    Shixiong Xia
    Jiaqi Zhao
    Yong Zhou
    Qiang Niu
    Rui Yao
    Ying Chen
    Multimedia Tools and Applications, 2020, 79 : 34973 - 34992