Substitution Delone sets with pure point spectrum are inter-model sets

被引:19
|
作者
Lee, Jeong-Yup [1 ]
机构
[1] KIAS, Seoul 130722, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
pure point spectrum; quasicrystal; model set; substitution; coincidence;
D O I
10.1016/j.geomphys.2007.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper establishes an equivalence between pure point diffraction and certain types of model sets, called inter-model sets, in the context of substitution point sets and substitution tilings. The key ingredients are a new type of coincidence condition in substitution point sets, which we call algebraic coincidence, and the use of a recent characterization of model sets through dynamical systems associated with the point sets or tilings. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2263 / 2285
页数:23
相关论文
共 50 条
  • [31] Ahlfors–David Regular Sets, Point Spectrum and Dirichlet Spaces
    O. El-Fallah
    Y. Elmadani
    I. Labghail
    [J]. Results in Mathematics, 2024, 79
  • [32] SPECTRUM AND FIXED-POINT SETS OF ISOMETRIES .2.
    DONNELLY, H
    PATODI, VK
    [J]. TOPOLOGY, 1977, 16 (01) : 1 - 11
  • [33] SPECTRUM AND FIXED-POINT SETS OF ISOMETRIES .1.
    DONNELLY, H
    [J]. MATHEMATISCHE ANNALEN, 1976, 224 (02) : 161 - 170
  • [34] A short guide to pure point diffraction in cut-and-project sets
    Richard, Christoph
    Strungaru, Nicolae
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (15)
  • [35] PURE-INJECTIVITY AND MODEL THEORY FOR G-SETS
    Rajani, Ravi
    Prest, Mike
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2009, 74 (02) : 474 - 488
  • [36] A Generative Model for the Joint Registration of Multiple Point Sets
    Evangelidis, Georgios D.
    Kounades-Bastian, Dionyssos
    Horaud, Radu
    Psarakis, Emmanouil Z.
    [J]. COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 : 109 - 122
  • [37] Polyhedral model retrieval using weighted point sets
    Tangelder, JWH
    Veltkamp, RC
    [J]. SMI 2003: SHAPE MODELING INTERNATIONAL 2003, PROCEEDINGS, 2003, : 119 - +
  • [38] Weighted Model Sets and their Higher Point-Correlations
    Deng, Xinghua
    Moody, Robert V.
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (03): : 487 - 497
  • [39] Ahlfors-David Regular Sets, Point Spectrum and Dirichlet Spaces
    El-Fallah, O.
    Elmadani, Y.
    Labghail, I.
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (02)
  • [40] Pure point spectrum for the Maryland model: a constructive proof
    Jitomirskaya, Svetlana
    Yang, Fan
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (01) : 283 - 294