Polynomial functions over finite commutative rings

被引:4
|
作者
Bulyovszky, Balazs [1 ]
Horvath, Gabor [1 ]
机构
[1] Univ Debrecen, Inst Math, Pf 400, H-4002 Debrecen, Hungary
关键词
Polynomial functions; Local rings; Interpolation;
D O I
10.1016/j.tcs.2017.09.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a necessary and sufficient condition for a function being a polynomial function over a finite, commutative, unital ring. Further, we give an algorithm running in quasilinear time that determines whether or not a function given by its function table can be represented by a polynomial, and if the answer is yes then it provides one such polynomial. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 86
页数:11
相关论文
共 50 条
  • [31] NILPOTENT GRAPHS OF SKEW POLYNOMIAL RINGS OVER NON-COMMUTATIVE RINGS
    Nikmehr, Mohamad Javad
    Azadi, Abdolreza
    [J]. TRANSACTIONS ON COMBINATORICS, 2020, 9 (01) : 41 - 48
  • [32] Unitary Cayley graphs of matrix rings over finite commutative rings
    Rattanakangwanwong, Jitsupat
    Meemark, Yotsanan
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2020, 65
  • [33] Pontrjagin duality and codes over finite commutative rings
    Abdelmoumen, Khalid
    Najmeddine, Mustapha
    Ben-Azza, Hussain
    [J]. World Academy of Science, Engineering and Technology, 2011, 56 : 999 - 1003
  • [34] Waring numbers over finite commutative local rings
    Podesta, Ricardo A.
    Videla, Denis E.
    [J]. DISCRETE MATHEMATICS, 2023, 346 (10)
  • [35] CYCLOTOMIC SCHEMES OVER FINITE, COMMUTATIVE, ADMISSIBLE RINGS
    GOLDBACH, RW
    CLAASEN, HL
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1992, 3 (03): : 277 - 299
  • [36] CONTRAVARIANTLY FINITE RESOLVING SUBCATEGORIES OVER COMMUTATIVE RINGS
    Takahashi, Ryo
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (02) : 417 - 436
  • [37] Dynamics of linear systems over finite commutative rings
    Wei, Yangjiang
    Xu, Guangwu
    Zou, Yi Ming
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2016, 27 (06) : 469 - 479
  • [38] Recursive MDS matrices over finite commutative rings
    Kesarwani, Abhishek
    Pandey, Sumit Kumar
    Sarkar, Santanu
    Venkateswarlu, Ayineedi
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 304 : 384 - 396
  • [39] Pairings on elliptic curves over finite commutative rings
    Galbraith, SD
    McKee, JF
    [J]. CRYPTOGRAPHY AND CODING, PROCEEDINGS, 2005, 3796 : 392 - 409
  • [40] Quadratic Gauss sums over finite commutative rings
    Szechtman, F
    [J]. JOURNAL OF NUMBER THEORY, 2002, 95 (01) : 1 - 13