Closed Weingarten hypersurfaces in Riemannian manifolds

被引:2
|
作者
Gerhardt, C
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:612 / 641
页数:30
相关论文
共 50 条
  • [21] On isoparametric linear Weingarten hypersurfaces in Riemannian and Lorentzian space forms
    Ozgur, Cihan
    [J]. GEOMETRY OF SUBMANIFOLDS, 2020, 756 : 207 - 218
  • [22] CMC Hypersurfaces on Riemannian and Semi-Riemannian Manifolds
    Perdomo, Oscar M.
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (01) : 17 - 37
  • [23] CMC Hypersurfaces on Riemannian and Semi-Riemannian Manifolds
    Oscar M. Perdomo
    [J]. Mathematical Physics, Analysis and Geometry, 2012, 15 : 17 - 37
  • [24] Regularity of isoperimetric hypersurfaces in Riemannian manifolds
    Morgan, F
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (12) : 5041 - 5052
  • [25] Vanishing theorems on hypersurfaces in Riemannian manifolds
    Zhu, Peng
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 5039 - 5043
  • [26] BIHARMONIC HYPERSURFACES IN COMPLETE RIEMANNIAN MANIFOLDS
    Alias, Luis J.
    Carolina Garcia-Martinez, S.
    Rigoli, Marco
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2013, 263 (01) : 1 - 12
  • [27] A filtration for isoparametric hypersurfaces in Riemannian manifolds
    Ge, Jianquan
    Tang, Zizhou
    Yan, Wenjiao
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (03) : 1179 - 1212
  • [28] GEOMETRY OF ISOPARAMETRIC HYPERSURFACES IN RIEMANNIAN MANIFOLDS
    Ge, Jianquan
    Tang, Zizhou
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (01) : 117 - 125
  • [29] Revisiting linear Weingarten hypersurfaces immersed into a locally symmetric Riemannian manifold
    Eudes L. de Lima
    Henrique F. de Lima
    Lucas S. Rocha
    [J]. European Journal of Mathematics, 2022, 8 : 388 - 402
  • [30] Revisiting linear Weingarten hypersurfaces immersed into a locally symmetric Riemannian manifold
    de Lima, Eudes L.
    de Lima, Henrique F.
    Rocha, Lucas S.
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (01) : 388 - 402