Fc receptor-mediated phagocytosis requires CDC42 and Rac1

被引:189
|
作者
Massol, P
Montcourrier, P
Guillemot, JC
Chavrier, P
机构
[1] CNRS, INSERM, Ctr Immuno, F-13288 Marseille 9, France
[2] Univ Montpellier 2, CNRS UMR 5539, F-34095 Montpellier, France
来源
EMBO JOURNAL | 1998年 / 17卷 / 21期
关键词
Clostridium difficile toxin B; Fc receptor; phagocytosis; Rho-GTP binding protein; tyrosine protein phosphatase;
D O I
10.1093/emboj/17.21.6219
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
At the surface of phagocytes, antibody-opsonized particles are recognized by surface receptors for the Fc portion of immunoglobulins (FcRs) that mediate their capture by an actin-driven process called phagocytosis which is poorly defined. We have analyzed the function of the Rho proteins Rad and CDC42 in the high affinity receptor for IgE (Fc epsilon RI)-mediated phagocytosis using transfected rat basophil leukemia (RBL-2H3) mast cells expressing dominant inhibitory forms of CDC42 and Rad. Binding of opsonized particles to untransfected RBL-2H3 cells led to the accumulation of F-actin at the site of contact with the particles and further, to particle internalization. This process was inhibited by Clostridium difficile toxin B, a general inhibitor of Rho GTP-binding proteins, Dominant inhibition of Rad or CDC42 function severely inhibited particle internalization but not F-actin accumulation. Inhibition of CDC42 function resulted in the appearance of pedestal-like structures with particles at their tips, while particles bound at the surface of the Rad mutant cell line were enclosed within thin membrane protrusions that did not fuse. These phenotypic differences indicate that Rac1 and CDC42 have distinct functions and may act cooperatively in the assembly of the phagocytic cup. Inhibition of phagocytosis in the mutant cell lines was accompanied by the persistence of tyrosine-phosphorylated proteins around bound particles. Phagocytic cup closure and particle internalization were also blocked when phosphotyrosine dephosphorylation was inhibited by treatment of RBL-2H3 cells with phenylarsine oxide, an inhibitor of protein phosphotyrosine phosphatases. Altogether, our data show that Rad and CDC42 are required to coordinate actin filament organization and membrane extension to form phagocytic cups and to allow particle internalization during FcR-mediated phagocytosis, Our data also suggest that Rac1 and CDC42 are involved in phosphotyrosine dephosphorylation required for particle internalization.
引用
收藏
页码:6219 / 6229
页数:11
相关论文
共 50 条
  • [21] Rac1 and Cdc42 GTPases as novel targets in ovarian cancer
    Wandinger-Ness, Angela
    Kenney, S. Ray
    Agola, Jacob
    Roxby, Joshua
    Surviladze, Zurab
    Silberberg, Melina
    Zeineldin, Reema
    Vestling, Anna
    Bologa, Cristian
    Ursu, Oleg
    Oprea, Tudor
    Muller, Carolyn
    Lomo, Lesley
    Sklar, Larry
    Hudson, Laurie G.
    CANCER RESEARCH, 2011, 71
  • [22] Distinct predictive performance of Rac1 and Cdc42 in cell migration
    Masataka Yamao
    Honda Naoki
    Katsuyuki Kunida
    Kazuhiro Aoki
    Michiyuki Matsuda
    Shin Ishii
    Scientific Reports, 5
  • [23] Rac1、Cdc42在肿瘤方面的研究
    郭世洲
    原禄双
    张俊华
    医学综述, 2007, (11) : 821 - 823
  • [24] Vav2 is an activator of Cdc42, Rac1, and RhoA
    Abe, K
    Rossman, KL
    Liu, B
    Ritola, KD
    Chiang, D
    Campbell, SL
    Burridge, K
    Der, CJ
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (14) : 10141 - 10149
  • [25] Distinct predictive performance of Rac1 and Cdc42 in cell migration
    Yamao, Masataka
    Naoki, Honda
    Kunida, Katsuyuki
    Aoki, Kazuhiro
    Matsuda, Michiyuki
    Ishii, Shin
    SCIENTIFIC REPORTS, 2015, 5
  • [26] Actin binding protein complexes regulated by Rac1/Cdc42
    Seifert, J. L.
    Alfaro, M.
    Barker, A.
    Hynds, D. L.
    JOURNAL OF NEUROCHEMISTRY, 2008, 104 : 34 - 34
  • [27] Enantiomer specific inhibition of Rac1 and Cdc42 in Ovarian Cancer
    Kenney, S. R.
    Roxby, J.
    Romero, E.
    Ursu, O.
    Oprea, T.
    Sklar, L.
    Wandinger-Ness, A.
    Hudson, L. G.
    MOLECULAR BIOLOGY OF THE CELL, 2011, 22
  • [28] Protection from Clostridium difficile toxin B-catalysed Rac1/Cdc42 glucosylation by tauroursodeoxycholic acid-induced Rac1/Cdc42 phosphorylation
    Brandes, Vanessa
    Schelle, Ilona
    Brinkmann, Sophie
    Schulz, Florian
    Schwarz, Janett
    Gerhard, Ralf
    Genth, Harald
    BIOLOGICAL CHEMISTRY, 2012, 393 (1-2) : 77 - 84
  • [29] Cdc42 and Rac1 regulate the interaction of IQGAP1 with β-catenin
    Fukata, M
    Kuroda, S
    Nakagawa, M
    Kawajiri, A
    Itoh, N
    Shoji, I
    Matsuura, Y
    Yonehara, S
    Fujisawa, H
    Kikuchi, A
    Kaibuchi, K
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) : 26044 - 26050
  • [30] Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1
    Kuroda, S
    Fukata, M
    Kobayashi, K
    Nakafuku, M
    Nomura, N
    Iwamatsu, A
    Kaibuchi, K
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (38) : 23363 - 23367