The Shapley value, the Proper Shapley value, and sharing rules for cooperative ventures

被引:9
|
作者
van den Brink, Rene [1 ,2 ]
Levinsky, Rene [3 ,4 ]
Zeleny, Miroslav [5 ]
机构
[1] Vrije Univ Amsterdam, Sch Business & Econ, Dept Econometr, Boelelaan 1105, NL-1081 HV Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Sch Business & Econ, Tinbergen Inst, Boelelaan 1105, NL-1081 HV Amsterdam, Netherlands
[3] Ctr Econ Res, Politickych Veznu 936-7, Prague 11000, Czech Republic
[4] Econ Inst, Grad Educ, Politickych Veznu 936-7, Prague 11000, Czech Republic
[5] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675, Czech Republic
关键词
Equity principle; Cooperative venture game; Shapley value; Proper Shapley value;
D O I
10.1016/j.orl.2019.11.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this note, we discuss two solutions for cooperative transferable utility games, namely the Shapley value and the Proper Shapley value. We characterize positive Proper Shapley values by affine invariance and by an axiom that requires proportional allocation of the surplus according to the individual singleton worths in generalized joint venture games. As a counterpart, we show that affine invariance and an axiom that requires equal allocation of the surplus in generalized joint venture games characterize the Shapley value. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 50 条
  • [1] Shapley Value of Homogeneous Cooperative Games
    Vasil'ev, V. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (03) : 450 - 465
  • [2] Shapley Value of Homogeneous Cooperative Games
    V. A. Vasil’ev
    [J]. Computational Mathematics and Mathematical Physics, 2023, 63 : 450 - 465
  • [3] Collinearity between the Shapley value and the egalitarian division rules for cooperative games
    Dragan, I
    Driessen, T
    Funaki, Y
    [J]. OR SPEKTRUM, 1996, 18 (02) : 97 - 105
  • [4] Two extensions of the Shapley value for cooperative games
    Driessen, TSH
    Paulusma, D
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2001, 53 (01) : 35 - 49
  • [5] Interval Shapley value for fuzzy cooperative games
    Yu, Xiao-hui
    Zhang, Qiang
    [J]. Proceedings of the Second International Conference on Game Theory and Applications, 2007, : 256 - 261
  • [6] The Shapley Value of Cooperative Game with Stochastic Payoffs
    E, Cheng-Guo
    Li, Quan-Lin
    Li, Shi-Yong
    [J]. 26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1717 - 1722
  • [7] Axiomatizations of the Shapley value for cooperative games on antimatroids
    E. Algaba
    J. M. Bilbao
    R. van den Brink
    A. Jiménez-Losada
    [J]. Mathematical Methods of Operations Research, 2003, 57 : 49 - 65
  • [8] Hodge decomposition and the Shapley value of a cooperative game
    Stern, Ari
    Tettenhorst, Alexander
    [J]. GAMES AND ECONOMIC BEHAVIOR, 2019, 113 : 186 - 198
  • [9] The Shapley Value in Fuzzy Simple Cooperative Games
    Gladysz, Barbara
    Mercik, Jacek
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I, 2018, 10751 : 410 - 418
  • [10] The Shapley value for cooperative games with restricted worths
    Sun, Panfei
    Hou, Dongshuang
    Sun, Hao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (02)