Axiomatizations of the Shapley value for cooperative games on antimatroids

被引:0
|
作者
E. Algaba
J. M. Bilbao
R. van den Brink
A. Jiménez-Losada
机构
[1] Matemática Aplicada II,
[2] Escuela Superior de Ingenieros,undefined
[3] Camino de los Descubrimientos,undefined
[4] 41092 Sevilla,undefined
[5] Spain (E-mail: encarni@matinc.us.es),undefined
[6] Matemática Aplicada II (E-mail: mbilbao@us.es),undefined
[7] Department of Econometrics,undefined
[8] Free University,undefined
[9] De Boelelaan 1105,undefined
[10] 1081 HV Amsterdam,undefined
[11] The Netherlands (E-mail: jrbrink@feweb.vu.nl),undefined
[12] Matemática Aplicada II (E-mail: hispan@matinc.us.es),undefined
关键词
Mathematics Subject Classification 2000: 91A12; Key words: antimatroid; cooperative game; permission structure; Shapley value;
D O I
暂无
中图分类号
学科分类号
摘要
Cooperative games on antimatroids are cooperative games restricted by a combinatorial structure which generalize the permission structure. So, cooperative games on antimatroids group several well-known families of games which have important applications in economics and politics. Therefore, the study of the rectricted games by antimatroids allows to unify criteria of various lines of research. The current paper establishes axioms that determine the restricted Shapley value on antimatroids by conditions on the cooperative game v and the structure determined by the antimatroid. This axiomatization generalizes the axiomatizations of both the conjunctive and disjunctive permission value for games with a permission structure. We also provide an axiomatization of the Shapley value restricted to the smaller class of poset antimatroids. Finally, we apply our model to auction situations.
引用
收藏
页码:49 / 65
页数:16
相关论文
共 50 条
  • [1] Axiomatizations of the Shapley value for cooperative games on antimatroids
    Algaba, E
    Bilbao, JM
    van den Brink, R
    Jiménez-Losada, A
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2003, 57 (01) : 49 - 65
  • [2] On Axiomatizations of the Shapley Value for Bi-cooperative Games
    Wu Meirong
    Cao Shaochen
    Zhu Huazhen
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [3] On axiomatizations of the Shapley value for assignment games
    van den Brink, Rene
    Pinter, Miklos
    [J]. JOURNAL OF MATHEMATICAL ECONOMICS, 2015, 60 : 110 - 114
  • [4] Axiomatizations of the Shapley value for games on augmenting systems
    Bilbao, J. M.
    Ordonez, M.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 196 (03) : 1008 - 1014
  • [5] An axiomatization of the Banzhaf value for cooperative games on antimatroids
    Algaba, E
    Bilbao, JM
    van den Brink, R
    Jiménez-Losada, A
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2004, 59 (01) : 147 - 166
  • [6] An axiomatization of the Banzhaf value for cooperative games on antimatroids
    E. Algaba
    J. M. Bilbao
    R. van den Brink
    A. Jiménez-Losada
    [J]. Mathematical Methods of Operations Research, 2004, 59 : 147 - 166
  • [7] Cooperative games on antimatroids
    Algaba, E
    Bilbao, JM
    van den Brink, R
    Jiménez-Losada, A
    [J]. DISCRETE MATHEMATICS, 2004, 282 (1-3) : 1 - 15
  • [8] Axiomatizations of the proportional Shapley value
    Manfred Besner
    [J]. Theory and Decision, 2019, 86 : 161 - 183
  • [9] Shapley Value of Homogeneous Cooperative Games
    Vasil'ev, V. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (03) : 450 - 465
  • [10] Shapley Value of Homogeneous Cooperative Games
    V. A. Vasil’ev
    [J]. Computational Mathematics and Mathematical Physics, 2023, 63 : 450 - 465