Realizations of su(1,1) and Uq(su(1,1)) and generating functions for orthogonal polynomials

被引:23
|
作者
Van der Jeugt, J
Jagannathan, R
机构
[1] State Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
[2] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
D O I
10.1063/1.532509
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Positive discrete series representations of the Lie algebra su(1,1) and the quantum algebra U-q(su(1,1)) are considered. The diagonalization of a self-adjoint operator (the Hamiltonian) in these representations and in tensor products of such representations is determined, and the generalized eigenvectors are constructed in terms of orthogonal polynomials. Using simple realizations of su(1,1), U-q(su(1,1)), and their representations, these generalized eigenvectors are shown to coincide with generating functions for orthogonal polynomials. The relations valid in the tensor product representations then give rise to new generating functions for orthogonal polynomials, or to Poisson kernels. In particular, a group theoretical derivation of the Poisson kernel for Meixner-Pollaczek and Al-Salam-Chihara polynomials is obtained. (C) 1998 American Institute of Physics.
引用
收藏
页码:5062 / 5078
页数:17
相关论文
共 50 条
  • [1] SU(1,1) random polynomials
    Bleher, P
    Ridzal, D
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (1-2) : 147 - 171
  • [2] BOSON OPERATOR REALIZATIONS OF SU(2) AND SU(1,1) AND UNITARIZATION
    DOEBNER, HD
    GRUBER, B
    LORENTE, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (03) : 594 - 600
  • [3] Engineering SU(1,1) ⊗ SU(1,1) vibrational states
    Huerta Alderete, C.
    Morales Rodriguez, M. P.
    Rodriguez-Lara, B. M.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] SU(1,1) SQUEEZING OF SU(1,1) GENERALIZED COHERENT STATES
    BUZEK, V
    [J]. JOURNAL OF MODERN OPTICS, 1990, 37 (03) : 303 - 316
  • [5] Laguerre functions and representations of su(1,1)
    Groenevelt, W
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (3-4): : 329 - 352
  • [6] Inhomogeneous inverse differential realizations of the SU(1,1) group
    Yu, ZX
    Liu, YH
    [J]. HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 1999, 23 (06): : 529 - 535
  • [7] Racah Polynomials and Recoupling Schemes of su(1,1)
    Post, Sarah
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [8] Realizations of coupled vectors in the tensor product of representations of su(1,1) and su(2)
    Lievens, S
    Van der Jeugt, J
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 160 (1-2) : 191 - 208
  • [9] SU(2) AND SU(1,1) INTERFEROMETERS
    YURKE, B
    MCCALL, SL
    KLAUDER, JR
    [J]. PHYSICAL REVIEW A, 1986, 33 (06): : 4033 - 4054
  • [10] Asymmetric Stochastic Transport Models with Uq(su(1,1)) Symmetry
    Carinci, Gioia
    Giardina, Cristian
    Redig, Frank
    Sasamoto, Tomohiro
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (02) : 239 - 279