Laguerre functions and representations of su(1,1)

被引:5
|
作者
Groenevelt, W [1 ]
机构
[1] Tech Univ Delft, EWI TWA, NL-2600 GA Delft, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2003年 / 14卷 / 3-4期
关键词
D O I
10.1016/S0019-3577(03)90050-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Spectral analysis of a certain doubly infinite Jacobi operator leads to orthogonality relations for confluent hypergeometric functions, which are called Laguerre functions. This doubly infinite Jacobi operator corresponds to the action of a parabolic element of the Lie algebra su(1, 1). The Clebsch-Gordan coefficients for the tensor product representation of a positive and a negative discrete series representation of su(1, 1) are determined for the parabolic bases. They turn out to be multiples of Jacobi functions. From the interpretation of Laguerre polynomials and functions as overlap coefficients, we obtain a product formula for the Laguerre polynomials, given by an integral over Laguerre functions, Jacobi functions and continuous dual Hahn polynomials.
引用
收藏
页码:329 / 352
页数:24
相关论文
共 50 条
  • [1] Apppoach of the Associated Laguerre Functions to the su(1,1) Coherent States for Some Quantum Solvable Models
    Fakhri, H.
    Dehghani, A.
    Mojaveri, B.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2009, 109 (06) : 1228 - 1236
  • [2] Realizations of su(1,1) and Uq(su(1,1)) and generating functions for orthogonal polynomials
    Van der Jeugt, J
    Jagannathan, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) : 5062 - 5078
  • [3] The character of the exceptional series of representations of SU(1,1)
    Basu, D
    Bal, S
    Shajesh, KV
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (01) : 461 - 467
  • [4] Quantum Analogs of Tensor Product Representations of su(1,1)
    Groenevelt, Wolter
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [5] Realizations of coupled vectors in the tensor product of representations of su(1,1) and su(2)
    Lievens, S
    Van der Jeugt, J
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 160 (1-2) : 191 - 208
  • [6] OSCILLATOR REPRESENTATIONS OF THE LIE-ALGEBRA SU(1,1) AND THE QUANTUM ALGEBRA SUQ(1,1)
    HIRAYAMA, M
    YAMAKOSHI, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1993, 90 (02): : 293 - 305
  • [7] Unitary representations of the universal cover of SU(1,1) and tensor products
    Tomasini, Guillaume
    Orsted, Bent
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2014, 54 (02) : 311 - 352
  • [8] Analytic representations based on SU(1,1) coherent states and their applications
    Brif, C
    Vourdas, A
    Mann, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18): : 5873 - 5885
  • [9] PROJECTIVE-REPRESENTATIONS OF THE CURRENT GROUP SU(1,1)X
    GELFAND, IM
    GRAEV, MI
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (04) : 275 - 277
  • [10] Engineering SU(1,1) ⊗ SU(1,1) vibrational states
    Huerta Alderete, C.
    Morales Rodriguez, M. P.
    Rodriguez-Lara, B. M.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)