Using hierarchical shape models to spot keywords in cursive handwriting data

被引:6
|
作者
Burl, MC [1 ]
Perona, P [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
D O I
10.1109/CVPR.1998.698657
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Different instances of a handwritten word consist of the same basic features (humps, cusps, crossings, etc.) arranged in a deformable spatial pattern. Thus, keywords in cursive text can be detected by looking for the appropriate features in the "correct" spatial configuration. A keyword can be modeled hierarchically as a set of word fragments, each of which consists of lower-level features. To allow flexibility, the spatial configuration of keypoints within a fragment is modeled using a Dryden-Mardia (DM) probability density over the shape of the configuration. In a writer-dependent test on a transcription of the Declaration of Independence (similar to 1300 words, similar to 7500 characters), the method detected all eleven instances of the keyword "government" with only four false positives.
引用
收藏
页码:535 / 540
页数:6
相关论文
共 50 条
  • [31] HIERARCHICAL-MODELS AND ANALYSIS OF SHAPE
    HENDERSON, TC
    DAVIS, L
    PATTERN RECOGNITION, 1981, 14 (1-6) : 197 - 204
  • [32] Summary Models for Routing Keywords to Linked Data Sources
    Thanh Tran
    Zhang, Lei
    Studer, Ruch
    SEMANTIC WEB-ISWC 2010, PT I, 2010, 6496 : 781 - 797
  • [33] Recognizing Arabic Handwriting Using Statistical Hierarchical Architecture
    Alsaidi, Ramadhan A. M.
    Alanzi, Ayed R. A.
    Alenazi, Saleh R. A.
    Ghilan, Taufiq H.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (08): : 9 - 15
  • [34] Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition system
    Marti, UV
    Bunke, H
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2001, 15 (01) : 65 - 90
  • [35] Hierarchical models for repeated binary data using the IBF sampler
    Tan, M
    Tian, GL
    Ng, KW
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (05) : 1272 - 1286
  • [36] Analysis of ulcer data using hierarchical generalized linear models
    Lee, YJ
    Nelder, JA
    STATISTICS IN MEDICINE, 2002, 21 (02) : 191 - 202
  • [37] Contextual Ranking of Keywords Using Click Data
    Irmak, Utku
    von Brzeski, Vadim
    Kraft, Reiner
    ICDE: 2009 IEEE 25TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2009, : 457 - 468
  • [38] Efficient Ontology Processing Using Hierarchical Data Models Representation
    Salomie, Ioan
    Dinsoreanu, Mihaela
    Rat, Cornel
    Suciu, Sorin
    2009 IEEE 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING, PROCEEDINGS, 2009, : 211 - 214
  • [39] KeyHierQC: Leveraging Keywords and Hierarchical Data for Enhanced Classification of Question Knowledge Points
    Shan, Jiayi
    Meng, Fanjun
    Xu, Xingjian
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14875 : 427 - 438
  • [40] Spoken handwriting verification using statistical models
    Humm, Andreas
    Ingold, Rolf
    Hennebert, Jean
    ICDAR 2007: NINTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2007, : 999 - 1003