Recovery of Corrupted Data in Wireless Sensor Networks Using Tensor Robust Principal Component Analysis

被引:8
|
作者
Zhang, Xiaoyue [1 ]
He, Jingfei [1 ]
Li, Yunpei [1 ]
Chi, Yue [1 ]
Zhou, Yatong [1 ]
机构
[1] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin Key Lab Elect Mat & Devices, Tianjin 300401, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensors; Wireless sensor networks; Correlation; Principal component analysis; Matrix decomposition; Sparse matrices; Reconstruction algorithms; Tensor robust principal component analysis; tensor singular value decomposition; corrupted data reconstruction; wireless sensor networks; MATRIX COMPLETION; SPARSITY;
D O I
10.1109/LCOMM.2021.3097158
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Due to the hardware and network conditions, data collected in Wireless Sensor Networks usually suffer from loss and corruption. Most existing research works mainly consider the reconstruction of missing data without data corruption. However, the inevitable data corruption poses a great challenge to guarantee the recovery accuracy. To address this problem, this letter proposes a data recovery method based on tensor singular value decomposition. Data collected by the spatial distributed sensor nodes in each time slot is arranged in matrix form instead of vector to further exploit the spatial correlation of the data. Therefore, data collected in consecutive time slots can form a three-way tensor. To avoid the influence of corruption on recovery accuracy, a Tensor Robust Principal Component Analysis model is developed to decompose the raw data tensor into a low-rank normal data tensor and a sparse error tensor. The recovery accuracy is further improved by incorporating total variation constraint. Computer experiments corroborate that the proposed method significantly outperforms the existing method in the recovery accuracy.
引用
收藏
页码:3389 / 3393
页数:5
相关论文
共 50 条
  • [21] Convex-Concave Tensor Robust Principal Component Analysis
    Liu, Youfa
    Du, Bo
    Chen, Yongyong
    Zhang, Lefei
    Gong, Mingming
    Tao, Dacheng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (05) : 1721 - 1747
  • [22] Approximate Bayesian Algorithm for Tensor Robust Principal Component Analysis
    Srakar, Andrej
    [J]. NEW FRONTIERS IN BAYESIAN STATISTICS, BAYSM 2021, 2022, 405 : 1 - 9
  • [23] Data Recovery in Wireless Sensor Networks using Network Coding
    Shahidan, A. A.
    Fisal, N.
    Ismail, Nor-Syahidatul N.
    Yunus, Farizah
    Ariffin, Sharifah H. S.
    [J]. JURNAL TEKNOLOGI, 2015, 73 (03):
  • [24] Robust principal component analysis for functional data
    Peña, D
    Prieto, J
    [J]. TEST, 1999, 8 (01) : 56 - 60
  • [25] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    [J]. Test, 1999, 8 (1) : 1 - 73
  • [27] Distributed Estimation in Heterogeneous Sensor Networks Using Principal Component Analysis
    Han, Liang
    Li, Saichao
    Mu, Jiasong
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2016, 386 : 37 - 43
  • [28] FACE RECOVERY IN CONFERENCE VIDEO STREAMING USING ROBUST PRINCIPAL COMPONENT ANALYSIS
    Tan, Wai-tian
    Cheung, Gene
    Ma, Yi
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [29] Analysis of diffusion tensor magnetic resonance imaging data using principal component analysis
    Papadakis, NG
    Zheng, Y
    Wilkinson, ID
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (24): : N343 - N350
  • [30] Using the Robust Principal Component Analysis to Identify Incorrect Aerological Data
    A. M. Kozin
    A. D. Lykov
    I. A. Vyazankin
    A. S. Vyazankin
    [J]. Russian Meteorology and Hydrology, 2021, 46 : 631 - 639