DETECTION OF METHANE AND HEAVY HYDROCARBON GASES IN THE INFRARED RANGE USING HYPERSPECTRAL AIRBORNE REMOTE SENSING: AN OVERVIEW

被引:0
|
作者
Moreira Scafutto, Rebecca Del Papa [1 ]
de Souza Filho, Carlos Roberto [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Inst Geosci, POB 6152, BR-13083855 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Methane; hydrocarbon; hyperspectral; infrared; airborne; TRACE GASES; RETRIEVAL; PLUMES;
D O I
10.1109/igarss.2019.8900556
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The detection of fugitive emissions of hydrocarbon (HC) gases steamed from geological reservoirs and leaks in pipelines and refineries has a twofold application: (i) as an exploration and monitoring tool in the fossil fuel industry, and (ii) as a way to improve the estimative of global methane (CH4) budget emissions. HC gases display spectral features at short-, mid- and longwave infrared ranges, which can be used for the detection of gas plumes with remote sensing methods. Here, we present an overview and evaluation of the main methodologies developed for the mapping and quantification of HC gas plumes with airborne hyperspectral sensors.
引用
收藏
页码:5780 / 5783
页数:4
相关论文
共 50 条
  • [21] Exploration of geothermal systems using hyperspectral thermal infrared remote sensing
    Reath, Kevin A.
    Ramsey, Michael S.
    [J]. JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2013, 265 : 27 - 38
  • [22] Development of infrared hyperspectral remote sensing imaging and application of gas detection (invited)
    Li, Chunlai
    Liu, Chengyu
    Jin, Jian
    Xu, Rui
    Lv, Gang
    Xie, Jianan
    Yuan, Liyin
    Liu, Shijie
    Wang, Jianyu
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (07):
  • [23] Detection of wheat powdery mildew by using hyperspectral remote sensing
    Cao, X.
    Zhou, Y.
    Duan, X.
    Cheng, D.
    [J]. PHYTOPATHOLOGY, 2011, 101 (06) : S26 - S26
  • [24] Early detection of a tree pathogen using airborne remote sensing
    Weingarten, Erin
    Martin, Roberta E.
    Hughes, Richard Flint
    Vaughn, Nicholas R.
    Shafron, Ethan
    Asner, Gregory P.
    [J]. ECOLOGICAL APPLICATIONS, 2022, 32 (02)
  • [25] Mapping forest and peat fires using hyperspectral airborne remote-sensing data
    V. V. Kozoderov
    T. V. Kondranin
    E. V. Dmitriev
    V. P. Kamentsev
    [J]. Izvestiya, Atmospheric and Oceanic Physics, 2012, 48 (9) : 941 - 948
  • [26] Mapping forest and peat fires using hyperspectral airborne remote-sensing data
    Kozoderov, V. V.
    Kondranin, T. V.
    Dmitriev, E. V.
    Kamentsev, V. P.
    [J]. IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2012, 48 (09) : 941 - 948
  • [27] MORPHOLOGICAL ANALYSIS FOR BANANA DISEASE DETECTION IN CLOSE RANGE HYPERSPECTRAL REMOTE SENSING IMAGES
    Liao, Wenzhi
    Ochoa, Daniel
    Gao, Lianru
    Zhang, Bing
    Philips, Wilfried
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3697 - 3700
  • [28] Research on infrared hyperspectral remote sensing cloud detection method based on deep learning
    Ni, Zhuoya
    Wu, Mengdie
    Lu, Qifeng
    Huo, Hongyuan
    Wang, Fu
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 45 (19-20) : 7497 - 7517
  • [29] Hyperspectral remote sensing for foliar nutrient detection in forestry: A near-infrared perspective
    Singh, L.
    Mutanga, O.
    Mafongoya, P.
    Peerbhay, K.
    Crous, J.
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2022, 25
  • [30] Detection of a buoyant coastal wastewater discharge using airborne hyperspectral and infrared imagery
    Marmorino, George O.
    Smith, Geoffrey B.
    Miller, W. D.
    Bowles, Jeffrey H.
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2010, 4