Abundant Refractory Sulfur in Protoplanetary Disks

被引:78
|
作者
Kama, Mihkel [1 ]
Shorttle, Oliver [1 ]
Jermyn, Adam S. [1 ,2 ]
Folsom, Colin P. [3 ]
Furuya, Kenji [4 ]
Bergin, Edwin A. [5 ]
Walsh, Catherine [6 ]
Keller, Lindsay [7 ]
机构
[1] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Univ Toulouse, IRAP, UPS, CNRS,CNES, F-31400 Toulouse, France
[4] Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennoudai, Tsukuba, Ibaraki 3058577, Japan
[5] Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 48109 USA
[6] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[7] NASA, ARES, JSC, Code XI3, Houston, TX 77058 USA
来源
ASTROPHYSICAL JOURNAL | 2019年 / 885卷 / 02期
基金
英国科学技术设施理事会; 美国国家科学基金会; 欧盟地平线“2020”;
关键词
Planet formation; Protoplanetary disks; Astrochemistry; Meteorite composition; Chemically peculiar stars; LAMBDA-BOOTIS STARS; HERBIG AE/BE STARS; IRON SULFIDE; SPECTROSCOPIC SURVEY; EVOLUTION; SYSTEM; CONDENSATION; MOLECULES; CHEMISTRY; EFFICIENT;
D O I
10.3847/1538-4357/ab45f8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Sulfur is one of the most abundant elements in the universe, with important roles in astro-, geo-, and biochemistry. Its main reservoirs in planet-forming disks have previously eluded detection: gaseous molecules only account for <1% of total elemental sulfur, with the rest likely in either ices or refractory minerals. We use a new method to measure the refractory component. Mechanisms such as giant planets can filter out dust from gas accreting onto disk-hosting stars. For stars above 1.4 solar masses, this leaves a chemical signature on the stellar photosphere that can be used to determine the fraction of each element that is locked in dust. Here, we present an application of this method to sulfur, zinc, and sodium. We analyze the accretion-contaminated photospheres of a sample of young stars and find (89;;8)% of elemental sulfur is in refractory form in their disks. The main carrier is much more refractory than water ice, consistent with sulfide minerals such as FeS.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Protostars and protoplanetary disks
    Boss, AP
    ASTROPHYSICS AND SPACE SCIENCE, 1998, 255 (1-2) : 15 - 23
  • [22] SILICA IN PROTOPLANETARY DISKS
    Sargent, B. A.
    Forrest, W. J.
    Tayrien, C.
    McClure, M. K.
    Li, A.
    Basu, A. R.
    Manoj, P.
    Watson, D. M.
    Bohac, C. J.
    Furlan, E.
    Kim, K. H.
    Green, J. D.
    Sloan, G. C.
    ASTROPHYSICAL JOURNAL, 2009, 690 (02): : 1193 - 1207
  • [23] The structures of protoplanetary disks
    Andrews, Sean M.
    PHYSICS TODAY, 2021, 74 (08) : 36 - 41
  • [24] Opacities for protoplanetary disks
    Semenov, D
    Henning, T
    Ilgner, M
    Helling, C
    Sedlmayr, E
    STELLAR ATMOSPHERE MODELING, 2003, 288 : 361 - 364
  • [25] Temperatures in protoplanetary disks
    Boss, AP
    ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 1998, 26 : 53 - 80
  • [26] HNC IN PROTOPLANETARY DISKS
    Graninger, Dawn
    Oeberg, Karin I.
    Qi, Chunhua
    Kastner, Joel
    ASTROPHYSICAL JOURNAL LETTERS, 2015, 807 (01)
  • [27] Vortices in protoplanetary disks
    Godon, P
    Livio, M
    ASTROPHYSICAL JOURNAL, 1999, 523 (01): : 350 - 356
  • [28] Planet formation, protoplanetary disks and debris disks
    Lissauer, Jack J.
    SPITZER SPACE TELESCOPE: NEW VIEWS OF THE COSMOS, 2006, 357 : 31 - 38
  • [29] Tracing the Formation History of Giant Planets in Protoplanetary Disks with Carbon, Oxygen, Nitrogen, and Sulfur
    Turrini, D.
    Schisano, E.
    Fonte, S.
    Molinari, S.
    Politi, R.
    Fedele, D.
    Panic, O.
    Kama, M.
    Changeat, Q.
    Tinetti, G.
    ASTROPHYSICAL JOURNAL, 2021, 909 (01):
  • [30] MIXING AND TRANSPORT OF SHORT-LIVED AND STABLE ISOTOPES AND REFRACTORY GRAINS IN PROTOPLANETARY DISKS
    Boss, Alan P.
    ASTROPHYSICAL JOURNAL, 2013, 773 (01):