Progress and limits of the numerical simulation of SiC bulk and epitaxy growth processes

被引:4
|
作者
Pons, M
Blanquet, E
Dedulle, JM
Ucar, M
Wellmann, P
Danielsson, Ö
Ferret, P
Di Cioccio, L
Baillet, F
Chaussende, D
Madar, R
机构
[1] Domaine Univ, INPGrenoble, CNRS, F-38402 St Martin Dheres, France
[2] Univ Erlangen Nurnberg, Mat Dept 6, D-91058 Erlangen, Germany
[3] Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
[4] CEA Grenoble, LETI, F-38054 Grenoble, France
关键词
SiC growth; sublimation; bulk; CVD; epitaxy; modeling; simulation;
D O I
10.4028/www.scientific.net/MSF.483-485.3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modeling and simulation of the SiC growth process is sufficiently mature to be used as a training tool for engineers as well as a decision making tool, e.g. when building new process equipment or up-scaling old ones. It is possible to simulate accurately temperature and deposition distributions, as well as doping. The key of success would be the combined use of simulation, experiments and characterization in a "daily interaction". The main limitation in SiC growth modeling is the accurate knowledge of physical, thermal, radiative, chemical and electrical data for the different components of the reactor. This is the weakest link in developing completely predictive models. In addition, the link between the thermochemical history of the grown material and its structure and defects still needs further development and input of experimental data.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [41] Aspects of flow stress modelling for numerical simulation of cyclic bulk forming processes
    Meinel, S.
    Kreissig, R.
    Ansorge, H.
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2007, 71 (01): : 9 - 20
  • [42] Progress in bulk GaN growth
    徐科
    王建峰
    任国强
    Chinese Physics B, 2015, 24 (06) : 5 - 20
  • [43] Advances in numerical simulation of wide-bandgap bulk crystal growth
    Kulik, Alexey V.
    OPTICAL MATERIALS, 2007, 30 (01) : 58 - 61
  • [44] Numerical modeling of SiC single crystal growth-sublimation and hot-wall epitaxy
    Nishizawa, Shin-ichi
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (03) : 871 - 874
  • [45] Optimization of bulk HgCdTe growth in a directional solidification furnace by numerical simulation
    Bune, AV
    Gillies, DC
    Lehoczky, SL
    THERMODYNAMICS AND KINETICS OF PHASE TRANSFORMATIONS, 1996, 398 : 139 - 144
  • [46] The Limits of Reproducibility in Numerical Simulation
    Diethelm, Kai
    COMPUTING IN SCIENCE & ENGINEERING, 2012, 14 (01) : 64 - 71
  • [47] Homoepitaxial SiC growth by molecular beam epitaxy
    Kern, RS
    Jarrendahl, K
    Tanaka, S
    Davis, RF
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1997, 202 (01): : 379 - 404
  • [48] Homoepitaxial SiC Growth by Molecular Beam Epitaxy
    Kern, R. S.
    Jaerrendahl, K.
    Tanaka, S.
    Davis, R. F.
    Physica Status Solidi (B): Basic Research, 202 (01):
  • [49] High growth rate of α-SiC by sublimation epitaxy
    Syvajarvi, M
    Yakimova, R
    MacMillan, MF
    Tuominen, M
    Kakanakova-Georgieva, A
    Hemmingsson, CG
    Ivanov, IG
    Janzen, E
    SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2, 1998, 264-2 : 143 - 146
  • [50] Open issues in SiC bulk growth
    Chaussende, Didier
    Ariyawong, Kanaparin
    Tsavdaris, Nikolaos
    Seiss, Martin
    Shin, Yun Ji
    Dedulle, Jean-Marc
    Madar, Roland
    Sarigiannidou, Eirini
    La Manna, Joseph
    Chaix-Pluchery, Odette
    Ouisse, Thierry
    SILICON CARBIDE AND RELATED MATERIALS 2013, PTS 1 AND 2, 2014, 778-780 : 3 - 8