Generalized Boolean Functions and Quantum Circuits on IBM-Q

被引:0
|
作者
Gangopadhyay, Sugata [1 ]
Poonia, Vishvendra Singh [2 ]
Aggarwal, Daattavya [3 ]
Parekh, Rhea [3 ]
机构
[1] Indian Inst Technol Roorkee, Dept Comp Sci & Engn, Roorkee, Uttar Pradesh, India
[2] Indian Inst Technol Roorkee, Dept Elect & Commun Engn, Roorkee, Uttar Pradesh, India
[3] Indian Inst Technol Roorkee, Dept Phys, Roorkee, Uttar Pradesh, India
关键词
Generalized boolean functions; quantum gates; quantum circuits; quantum computation;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We explicitly derive a connection between quantum circuits utilising IBM's quantum gate set and multivariate quadratic polynomials over integers modulo 8. We demonstrate that the action of a quantum circuit over input qubits can be written as generalized Walsh-Hadamard transform. Here, we derive the polynomials corresponding to implementations of the Swap gate and Toffoli gate using IBM-Q gate set.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum synchronization on the IBM Q system
    Koppenhofer, Martin
    Bruder, Christoph
    Roulet, Alexandre
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [42] Quantum learning of concentrated Boolean functions
    Krishna Palem
    Duc Hung Pham
    M. V. Panduranga Rao
    Quantum Information Processing, 21
  • [43] Quantum learning of concentrated Boolean functions
    Palem, Krishna
    Pham, Duc Hung
    Rao, M. V. Panduranga
    QUANTUM INFORMATION PROCESSING, 2022, 21 (07)
  • [44] A Quantum Algorithm for Boolean Functions Processing
    Aljuaydi, Fahad
    Abdelazim, Samar
    Darwish, Mohamed M.
    Zidan, Mohammed
    IEEE ACCESS, 2024, 12 : 164503 - 164519
  • [45] Random Networks with Quantum Boolean Functions
    Franco, Mario
    Zapata, Octavio
    Rosenblueth, David A.
    Gershenson, Carlos
    MATHEMATICS, 2021, 9 (08)
  • [46] Quantum algorithms for testing Boolean functions
    Floess, Dominik F.
    Andersson, Erika
    Hillery, Mark
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (26): : 101 - 108
  • [47] Adiabatic quantum gates and Boolean functions
    Andrecut, M
    Ali, MK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (25): : L267 - L273
  • [48] GENERALIZED APPROACH TO MINIMIZATION OF BOOLEAN FUNCTIONS.
    Shvartsman, M.I.
    1600, (13):
  • [49] Order of power of planar circuits implementing Boolean functions
    Kalachev, Gleb V.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2014, 24 (04): : 185 - 205
  • [50] APPROXIMATING BOOLEAN FUNCTIONS WITH DEPTH-2 CIRCUITS
    Blais, Eric
    Tan, Li-Yang
    SIAM JOURNAL ON COMPUTING, 2015, 44 (06) : 1583 - 1600