Chaos in a well: effects of competing length scales

被引:11
|
作者
Sankaranarayanan, R [1 ]
Lakshminarayan, A [1 ]
Sheorey, VB [1 ]
机构
[1] Phys Res Lab, Ahmedabad 380009, Gujarat, India
关键词
chaos;
D O I
10.1016/S0375-9601(01)00019-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A discontinuous generalization of the standard map, which arises naturally as the dynamics of a periodically kicked particle in a one-dimensional infinite square well potential, is examined. Existence of competing length scales, namely the width of the well and the wavelength of the external field, introduce novel dynamical behaviour. Deterministic chaos induced diffusion is observed for weak field strengths as the length scales do not match. This is related to an abrupt breakdown of rotationally invariant curves and in particular KAM tori, An approximate stability theory is derived wherein the usual standard map is a point of "bifurcation". (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 50 条
  • [41] Renormalization of Competing Interactions and Superconductivity on Small Scales
    Aharony, A.
    Entin-Wohlman, O.
    Imry, Y.
    JOURNAL OF STATISTICAL PHYSICS, 2014, 157 (4-5) : 979 - 989
  • [42] Metacognition as a Consequence of Competing Evolutionary Time Scales
    Kuchling, Franz
    Fields, Chris
    Levin, Michael
    ENTROPY, 2022, 24 (05)
  • [43] Time scales and length scales in magmatic mineral systems
    Barnes, Steve
    Robertson, Jesse
    MINERAL RESOURCES TO DISCOVER, VOLS 1-4, 2017, : 395 - 397
  • [44] Semiquantum chaos in the double well
    Blum, TC
    Elze, HT
    PHYSICAL REVIEW E, 1996, 53 (04) : 3123 - 3133
  • [45] Length scales for the fracture of nanostructures
    William W. Gerberich
    John M. Jungk
    Min Li
    Alex A. Volinsky
    Joel W. Hoehn
    Karl Yoder
    International Journal of Fracture, 2003, 120 : 387 - 405
  • [46] LONGER TURBULENCE LENGTH SCALES
    HARRIS, RI
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1986, 24 (01) : 61 - 68
  • [47] SIMULATION ON ALL LENGTH SCALES
    FINNIS, M
    PHYSICS WORLD, 1993, 6 (07) : 37 - 42
  • [48] Length scales for the fracture of nanostructures
    Gerberich, WW
    Jungk, JM
    Li, M
    Volinsky, AA
    Hoehn, JW
    Yoder, K
    INTERNATIONAL JOURNAL OF FRACTURE, 2003, 119 (4-2) : 387 - 405
  • [49] Nanoprobing fracture length scales
    Gerberich, W. W.
    Mook, W. M.
    Cordill, M. J.
    Jungk, J. M.
    Boyce, B.
    Friedmann, T.
    Moody, N. R.
    Yang, D.
    INTERNATIONAL JOURNAL OF FRACTURE, 2006, 138 (1-4) : 75 - 100
  • [50] Length scales and alloys of iron
    Bhadeshia, H. K. D. H.
    40TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE: METAL MICROSTRUCTURES IN 2D, 3D AND 4D, 2019, 580