Evaluation of radiophotoluminescent glass dosimeter response for therapeutic spot scanning proton beam: suggestion of linear energy transfer-based correction

被引:3
|
作者
Nagata, Junya [1 ]
Yasui, Keisuke [2 ]
Omachi, Chihiro [3 ]
Toshiyuki, Toshito [3 ]
Shimizu, Hidetoshi [4 ]
Aoyama, Takahiro [4 ]
Hayashi, Naoki [2 ]
机构
[1] Fujita Hlth Univ, Grad Sch Hlth Sci, Toyoake, Aichi, Japan
[2] Fujita Hlth Univ, Sch Hlth Sci, Fac Radiol Technol, Toyoake, Aichi, Japan
[3] Nagoya City West Med Ctr, Nagoya Proton Therapy Ctr, Nagoya, Aichi, Japan
[4] Aichi Canc Ctr Hosp, Dept Radiat Oncol, Nagoya, Aichi, Japan
来源
关键词
glass dosimeter; linear energy transfer; postal audit; proton dosimetry; under-response correction; APERTURE SYSTEM; PHOTON; RADIOTHERAPY; DETECTOR; VERIFICATION; FEASIBILITY; DEPENDENCE; AUDIT;
D O I
10.1002/acm2.13378
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A radiophotoluminescent glass dosimeter (RGD) is used for a postal audit of a photon beam because of its various excellent characteristics. However, it has not been used for scanning proton beams because its response characteristics have not been verified. In this study, the response of RGD to scanning protons was investigated to develop a dosimetry protocol using the linear energy transfer (LET)-based correction factor. The responses of RGD to four maximum-range-energy-pattern proton beams were verified by comparing it with ionization chamber (IC) dosimetry. The LET at each measurement depth was calculated via Monte Carlo (MC) simulation. The LET correction factor (kLETRGD) was the ratio between the uncorrected RGD dose (DrawRGD) and the IC dose at each measurement depth. kLETRGD can be represented as a function of LET using the following equation: kLETRGD(>LET=-0.035(>LET+1.090). DrawRGD showed a linear under-response with increasing LET, and the maximum dose difference between the IC dose and DrawRGD was 15.2% at an LET of 6.07 keV/mu m. The LET-based correction dose (DLETRGD) conformed within 3.6% of the IC dose. The mean dose difference (+/- SD) of DrawRGD and DLETRGD was -2.5 +/- 6.9% and 0.0 +/- 1.6%, respectively. To achieve accurate dose verification for scanning proton beams using RGD, we derived a linear regression equation based on LET. The results show that with appropriate LET correction, RGD can be used for dose verification of scanning proton beams.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 29 条
  • [1] Investigation of Radiophotoluminescent Glass Dosimeter Response for a Spot Scanning Proton Beam Dosimetry
    Nagata, J.
    Yasui, K.
    Hayashi, N.
    Ogawa, S.
    Ouchi, K.
    [J]. MEDICAL PHYSICS, 2020, 47 (06) : E804 - E804
  • [2] Absorbed Dose Measurement Using Radiophotoluminescent Glass Dosimeter in Therapeutic Proton Beam
    Chang, W.
    Koba, Y.
    Katayose, T.
    Hariu, M.
    Yasui, K.
    Saitoh, H.
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3502 - 3502
  • [3] Dosimetric response of radiophotoluminescent glass detectors in a scanning pencil proton beam
    Pasaricek, Luka
    Knezevic, Zeljka
    Brkic, Hrvoje
    Davidkova, Marie
    Navratil, Matej
    Vondracek, Vladimir
    Majer, Marija
    [J]. RADIATION MEASUREMENTS, 2024, 176
  • [4] Correction of stopping power and LET quenching for radiophotoluminescent glass dosimetry in a therapeutic proton beam
    Chang, Weishan
    Koba, Yusuke
    Katayose, Tetsurou
    Yasui, Keisuke
    Omachi, Chihiro
    Hariu, Masatsugu
    Saitoh, Hidetoshi
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (23): : 8869 - 8881
  • [5] Direct Response to Proton Beam Linear Energy Transfer (LET) in a Novel Polymer Gel Dosimeter Formulation
    Lopatiuk-Tirpak, O.
    Su, Z.
    Li, Z.
    Zeidan, O. A.
    Meeks, S. L.
    Maryanski, M. J.
    [J]. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2012, 11 (05) : 441 - 445
  • [6] Linear energy transfer characterization of five gel dosimeter formulations for electron and proton therapeutic beams
    Valente, M.
    Chacon, D.
    Mattea, F.
    Meilij, R.
    Perez, P.
    Romero, M.
    Scarinci, I
    Vedelago, J.
    Vitullo, F.
    Wolfel, A.
    [J]. APPLIED RADIATION AND ISOTOPES, 2021, 178
  • [7] Linear Energy Transfer Incorporated Spot Scanning Proton Arc Therapy (SPArc) Optimization
    Li, X.
    Ding, X.
    Liu, G.
    Janssens, G.
    Souris, K.
    Montero, A. Barragan
    Yan, D.
    Stevens, C.
    Kabolizadeh, P.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E292 - E292
  • [8] Linear energy transfer in normal tissues in spot scanning proton therapy of pro state cancer
    Pedersen, J.
    Petersen, J. B. B.
    Stokkevag, C. H.
    Ytre-Hauge, K. S.
    Casares-Magaz, O.
    Mendenhall, N.
    Muren, L. P.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S64 - S65
  • [9] Evaluation of Various Spot MU Correction Methods for Range Adaptive Scanning-Beam Proton Planning
    Cheung, J.
    Court, L.
    Park, P.
    Zhu, X.
    Frank, S.
    Kudchadker, R.
    Dong, L.
    [J]. MEDICAL PHYSICS, 2013, 40 (06)
  • [10] Linear Energy Transfer Response of Polymer Gel Dosimeters in Therapeutic Proton Beams
    Maryanski, M.
    Lopatiuk-Tirpak, O.
    Su, Z.
    Li, Z.
    Zeidan, O.
    Meeks, S.
    [J]. MEDICAL PHYSICS, 2011, 38 (06)