Classical solutions to the time-dependent Ginzburg-Landau equations for a bounded superconducting body in a vacuum

被引:4
|
作者
Bauman, P [1 ]
Jadallah, H
Phillips, D
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
[3] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2012107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The initial value problem for the time dependent Ginzburg-Landau equations used to model the electrodynamics of a superconducting body surrounded by a vacuum in R-3 is studied. We prove existence, uniqueness, and regularity results for solutions in the Coulomb, Lorentz, and temporal gauges. (c) 2005 American Institute of Physics.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Time-dependent Ginzburg-Landau equations for rotating superconductors with paramagnetic impurities
    K. M. Shahabasyan
    M. K. Shahabasyan
    Journal of Contemporary Physics (Armenian Academy of Sciences), 2012, 47 : 257 - 259
  • [32] A posteriori error analysis for time-dependent Ginzburg-Landau type equations
    Sören Bartels
    Numerische Mathematik, 2005, 99 : 557 - 583
  • [33] TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS FOR HARD-MODE INSTABILITIES
    YAMAFUJI, K
    TOKO, K
    URAHAMA, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) : 3819 - 3825
  • [34] Time-dependent Ginzburg-Landau equations for rotating superconductors with paramagnetic impurities
    Shahabasyan, K. M.
    Shahabasyan, M. K.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2012, 47 (06) : 257 - 259
  • [35] A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations
    Li, Buyang
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 238 - 250
  • [36] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
    Li, Minsi
    Gu, Jiahong
    Du, Long
    Zhong, Hongwei
    Zhou, Lijuan
    Chen, Qinghua
    CHINESE PHYSICS B, 2020, 29 (03)
  • [37] Asymptotics for the time dependent Ginzburg-Landau equations
    Fan, JS
    Ding, SJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) : 241 - 255
  • [38] Extended Time-Dependent Ginzburg-Landau Theory
    Grigorishin, Konstantin V.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2021, 203 (3-4) : 262 - 308
  • [39] Universal time-dependent Ginzburg-Landau theory
    Kapustin, Anton
    Mrini, Luke
    PHYSICAL REVIEW B, 2023, 107 (14)
  • [40] Time-dependent Ginzburg-Landau theory and duality
    Schakel, AMJ
    TOPOLOGICAL DEFECTS AND THE NON-EQUILIBRIUM DYNAMICS OF SYMMETRY BREAKING PHASE TRANSITIONS, 2000, 549 : 213 - 238