Repeated low-velocity impact response and damage mechanism of glass fiber aluminium laminates

被引:64
|
作者
Li, Lijun [1 ,2 ]
Sun, Lingyu [1 ,2 ]
Wang, Taikun [3 ]
Kang, Ning [1 ,2 ]
Cao, Wan [1 ,2 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[2] Beihang Univ, Lightweight Vehicle Innovat Ctr, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[3] Zhengzhou Electromech Engn Res Inst, Zhengzhou 450015, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Composites; Finite element method; Impact angle; Damage tolerance; Repeated impacts; Failure; METAL LAMINATE; RESISTANCE; BEHAVIOR; FAILURE; ENERGY; TOLERANCE; CRITERIA;
D O I
10.1016/j.ast.2018.11.038
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Glass fiber aluminium laminate (GLARE) is a kind of fiber metal laminates widely applied in aircraft structures, frequently subjected to low-velocity impact incidents. The purpose of this paper is to investigate the dynamic response and damage mechanism characterization of GLARE under single and repeated low-velocity impacts. Firstly, a progressive degradation finite element (FE) model was developed and validated. Three different failure criteria were compared to analyze the damage behavior of composites of GLARE in terms of accuracy and efficiency, wherein a user defined material subroutine VUMAT was introduced. Then, the validated model was used to study the influence of the impact angle. Four different impact angles including 30 degrees, 45 degrees, 60 degrees and 90 degrees were analyzed in terms of plastic deformation, impact contact force, energy absorption and internal damage. Finally, the simulation of GLARE subjected to repeated impacts was carried out, in which the cumulative damage effects were considered. The detailed dynamic response and damage evolution of aluminium layers and composite layers as well as their interfaces with the number of impacts increasing were revealed. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:995 / 1010
页数:16
相关论文
共 50 条
  • [41] A progressive damage model of composite laminates under low-velocity impact
    Zhou J.
    Wang S.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2021, 39 (01): : 37 - 45
  • [42] Numerical simulation of low-velocity impact damage on stitched composite laminates
    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Fuhe Cailiao Xuebao, 3 (715-724):
  • [43] Damage mechanisms in thin stitched laminates subjected to low-velocity impact
    Aymerich, F.
    Francesconi, L.
    INTERNATIONAL SYMPOSIUM ON DYNAMIC RESPONSE AND FAILURE OF COMPOSITE MATERIALS (DRAF2014), 2014, 88 : 133 - 140
  • [44] Low-velocity impact response and damage tolerance of hybrid biaxial/triaxial braided composite laminates
    Wu, Zhenyu
    Wang, Kang
    Shi, Lin
    Cheng, Xiaoying
    Yuan, Yanhong
    POLYMER COMPOSITES, 2023, 44 (06) : 3068 - 3083
  • [45] ANALYSIS OF DAMAGE ZONES IN GRAPHITE EPOXY LAMINATES IN LOW-VELOCITY IMPACT
    BOGDANOVICH, AE
    YARVE, EV
    MECHANICS OF COMPOSITE MATERIALS, 1991, 27 (03) : 270 - 276
  • [46] Oblique Low-Velocity Impact Response and Damage Behavior of Carbon-Epoxy Composite Laminates
    Sun, Jin
    Huang, Linhai
    Zhao, Junhua
    MATERIALS, 2022, 15 (15)
  • [47] Effect of Interlaminar Toughness on the Low-Velocity Impact Damage in Composite Laminates
    Qu, Peng
    Sun, Xiaochen
    Guan, Xiaojun
    Mu, Yidong
    Jia, Yuxi
    POLYMER COMPOSITES, 2016, 37 (04) : 1085 - 1092
  • [48] Finite element analysis of low-velocity impact damage in composite laminates
    Pradhan, B
    Kumar, S
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2000, 19 (04) : 322 - 339
  • [49] Research on Low-Velocity Impact Response of Novel Short-Fiber-Reinforced Composite Laminates
    Huang, Yinyuan
    EShun, Felix Thompson
    Hu, Junfeng
    Zhang, Xutong
    Zhao, Jianping
    Zhang, Siqi
    Qian, Rui
    Chen, Zhou
    Chen, Dingding
    POLYMERS, 2023, 15 (04)
  • [50] Influence of flaw on the low-velocity impact resistance performance of glass fiber reinforced aluminum laminates (GLARE)
    Wan Y.
    Yang H.
    Zhou S.
    Zheng Z.
    Chen S.
    Luo W.
    Huang Y.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2020, 41 (07): : 1022 - 1028