Isoparametric submanifolds in two-dimensional complex space forms

被引:2
|
作者
Carlos Diaz-Ramos, Jose [1 ]
Dominguez-Vazquez, Miguel [2 ]
Vidal-Castineira, Cristina [1 ]
机构
[1] Univ Santiago de Compostela, Dept Math, Santiago De Compostela, Spain
[2] ICMAT Inst Ciencias Matemat CSIC UAM UC3M UCM, Madrid, Spain
关键词
Complex hyperbolic plane; Complex projective plane; Isoparametric submanifold; Polar action; principal curvatures; CONSTANT PRINCIPAL CURVATURES; REAL HYPERSURFACES; FOLIATIONS;
D O I
10.1007/s10455-017-9572-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that an isoparametric submanifold of a complex hyperbolic plane, according to the definition of Heintze, Liu and Olmos', is an open part of a principal orbit of a polar action. We also show that there exists a non-isoparametric submanifold of the complex hyperbolic plane that is isoparametric according to the definition of Terng's. Finally, we classify Terng-isoparametric submanifolds of two-dimensional complex space forms.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 50 条