A Spatial-Temporal Similar Graph Attention Network for Cyber Physical System Perception via Traffic Forecasting

被引:1
|
作者
Zhao, Kaidi [1 ]
Xu, Mingyue [1 ]
Yang, Zhengzhuang [1 ]
Han, Dingding [1 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
基金
国家重点研发计划;
关键词
Intelligent transportation system; traffic flows prediction; graph convolution network; attention mechanism; RECURRENT NEURAL-NETWORK; FLOW PREDICTION;
D O I
10.1142/S0218126622501122
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow forecasting is the basic challenge in intelligent transportation system (ITS). The key problem is to improve the accuracy of model and capture the dynamic temporal and nonlinear spatial dependence. Using real data is one of the ways to improve the spatial-temporal correlation modeling accuracy. However, real traffic flow data are not strictly periodic because of some random factors, which may lead to some deviations. This study focuses on capturing and modeling the temporal perturbation in real periodic data and we propose a spatial-temporal similar graph attention network (STSGAN) to address this problem. In STSGAN, the spatial-temporal graph convolution module is to capture local spatial-temporal relationship in tra +/- c data, and the periodic similar attention module is to treat the nonlinear traffic flow information. Experiments on three datasets demonstrate that our model is best among all methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80
  • [2] STAGCN: Spatial-Temporal Attention Graph Convolution Network for Traffic Forecasting
    Gu, Yafeng
    Deng, Li
    MATHEMATICS, 2022, 10 (09)
  • [3] Spatial-Temporal Graph Attention Model on Traffic Forecasting
    Zhang, Xinlan
    Zhang, Zhenguo
    Jin, Xiaofeng
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 999 - 1003
  • [4] Graph Attention Network With Spatial-Temporal Clustering for Traffic Flow Forecasting in Intelligent Transportation System
    Chen, Yan
    Shu, Tian
    Zhou, Xiaokang
    Zheng, Xuzhe
    Kawai, Akira
    Fueda, Kaoru
    Yan, Zheng
    Liang, Wei
    Wang, Kevin I-Kai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8727 - 8737
  • [5] Sampling Spatial-Temporal Attention Network for Traffic Forecasting
    Chen, Mao
    Xu, Yi
    Han, Liangzhe
    Sun, Leilei
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2023, 2023, 14118 : 121 - 136
  • [6] Spatial-Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting
    Wu, Di
    Peng, Kai
    Wang, Shangguang
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14267 - 14281
  • [7] Dynamic multi-granularity spatial-temporal graph attention network for traffic forecasting
    Sang, Wei
    Zhang, Huiliang
    Kang, Xianchang
    Nie, Ping
    Meng, Xin
    Boulet, Benoit
    Sun, Pei
    INFORMATION SCIENCES, 2024, 662
  • [8] Spatial-Temporal Traffic Data Imputation via Graph Attention Convolutional Network
    Ye, Yongchao
    Zhang, Shiyao
    Yu, James J. Q.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 241 - 252
  • [9] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    35th AAAI Conference on Artificial Intelligence, AAAI 2021, 2021, 17A : 15008 - 15015
  • [10] Hybrid spatial-temporal graph neural network for traffic forecasting
    Wang, Peng
    Feng, Longxi
    Zhu, Yijie
    Wu, Haopeng
    INFORMATION FUSION, 2025, 118