CoastalImageLib: An open- source Python']Python package for creating common coastal image products

被引:1
|
作者
McCann, Maile P. [1 ,2 ]
Anderson, Dylan L. [2 ,3 ]
Sherwood, Christopher R. [4 ]
Bruder, Brittany [2 ]
Bak, A. Spicer [2 ]
Brodie, Katherine L. [2 ]
机构
[1] Univ Southern Calif, Sonny Astani Dept Civil & Environm Engn, Los Angeles, CA 90089 USA
[2] US Army, Coastal & Hydraul Lab, Engineer Res & Dev Ctr, 1261 Duck Rd, Kitty Hawk, NC 27949 USA
[3] North Carolina State Univ, Dept Civil Construct & Environm Engn, Raleigh, NC 27607 USA
[4] US Geol Survey, Woods Hole Coastal & Marine Sci Ctr, 384 Woods Hole Rd, Woods Hole, MA 02543 USA
基金
美国国家科学基金会;
关键词
!text type='Python']Python[!/text; Coastal imaging; Photogrammetry; Argus; VIDEO; QUANTIFICATION; MORPHOLOGY; ALGORITHM; CURRENTS; SUPPORT; SYSTEM;
D O I
10.1016/j.softx.2022.101215
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
CoastalImageLib is a Python library that produces common coastal image products intended for quantitative analysis of coastal environments. This library contains functions to georectify and merge multiple oblique camera views, produce statistical image products for a given set of images, and create subsampled pixel instruments for use in bathymetric inversion, surface current estimation, run-up calculations, and other quantitative analyses. This package intends to be an open-source broadly generalizable front end to future coastal imaging applications, ultimately expanding user accessibility to optical remote sensing of coastal environments. This package was developed and tested on data collected from the Argus Tower, a 43 m tall observation structure in Duck, North Carolina at the US Army Engineer Research and Development Center's Field Research Facility that holds six stationary cameras which collect twice-hourly coastal image products. Thus, CoastalImageLib also contains functions designed to interface with the file storage and collection system implemented at the Argus Tower.(c) 2022 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:7
相关论文
共 50 条
  • [21] PLACE: An Open-Source Python']Python Package for Laboratory Automation, Control, and Experimentation
    Johnson, Jami L.
    Woerden, Henrik Tom
    van Wijk, Kasper
    [J]. JALA, 2015, 20 (01): : 10 - 16
  • [22] RamanSPy: An Open-Source Python']Python Package for Integrative Raman Spectroscopy Data Analysis
    Georgiev, Dimitar
    Pedersen, Simon Vilms
    Xie, Ruoxiao
    Fernandez-Galiana, Alvaro
    Stevens, Molly M.
    Barahona, Mauricio
    [J]. ANALYTICAL CHEMISTRY, 2024, 96 (21) : 8492 - 8500
  • [23] Introduction to the Open Source PV_LIB for Python']Python Photovoltaic System Modelling Package
    Andrews, Robert W.
    Stein, Joshua S.
    Hansen, Clifford
    Riley, Daniel
    [J]. 2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 166 - 170
  • [24] RoutingBlocks: An Open-Source Python']Python Package for Vehicle Routing Problems with Intermediate Stops
    Klein, Patrick S.
    Schiffer, Maximilian
    [J]. INFORMS JOURNAL ON COMPUTING, 2024, 36 (04) : 966 - 973
  • [25] K Nearest Neighbor OveRsampling approach: An open source python']python package for data augmentation
    Islam, Ashhadul
    Belhaouari, Samir Brahim
    Rehman, Atiq Ur
    Bensmail, Halima
    [J]. SOFTWARE IMPACTS, 2022, 12
  • [26] RSOME in Python']Python: An Open-Source Package for Robust Stochastic Optimization Made Easy
    Chen, Zhi
    Xiong, Peng
    [J]. INFORMS JOURNAL ON COMPUTING, 2023, 35 (04) : 717 - 724
  • [27] BibMon: An open source Python']Python package for process monitoring, soft sensing, and fault diagnosis
    Melo, Afranio
    Lemos, Tiago S. M.
    Soares, Rafael M.
    Spina, Deris
    Clavijo, Nayher
    Campos, Luiz Felipe de O.
    Camara, Mauricio Melo
    Feital, Thiago
    Anzai, Thiago K.
    Thompson, Pedro H.
    Diehl, Fabio C.
    Pinto, Jose Carlos
    [J]. DIGITAL CHEMICAL ENGINEERING, 2024, 13
  • [28] Modelly: An open source all in one python']python package for developing machine learning models
    Sarkar, Tushar
    Shah, Disha
    [J]. SOFTWARE IMPACTS, 2022, 14
  • [29] BCI Toolbox: An open-source python']python package for the Bayesian causal inference model
    Zhu, Haocheng
    Beierholm, Ulrik
    Shams, Ladan
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (07)
  • [30] GPAW: An open Python']Python package for electronic structure calculations
    Mortensen, Jens Jorgen
    Larsen, Ask Hjorth
    Kuisma, Mikael
    Ivanov, Aleksei V.
    Taghizadeh, Alireza
    Peterson, Andrew
    Haldar, Anubhab
    Dohn, Asmus Ougaard
    Schafer, Christian
    Jonsson, Elvar Orn
    Hermes, Eric D.
    Nilsson, Fredrik Andreas
    Kastlunger, Georg
    Levi, Gianluca
    Jonsson, Hannes
    Hakkinen, Hannu
    Fojt, Jakub
    Kangsabanik, Jiban
    Sodequist, Joachim
    Lehtomaki, Jouko
    Heske, Julian
    Enkovaara, Jussi
    Winther, Kirsten Trostrup
    Dulak, Marcin
    Melander, Marko M.
    Ovesen, Martin
    Louhivuori, Martti
    Walter, Michael
    Gjerding, Morten
    Lopez-Acevedo, Olga
    Erhart, Paul
    Warmbier, Robert
    Wuerdemann, Rolf
    Kaappa, Sami
    Latini, Simone
    Boland, Tara Maria
    Bligaard, Thomas
    Skovhus, Thorbjorn
    Susi, Toma
    Maxson, Tristan
    Rossi, Tuomas
    Chen, Xi
    Schmerwitz, Yorick Leonard A.
    Schiotz, Jakob
    Olsen, Thomas
    Jacobsen, Karsten Wedel
    Thygesen, Kristian Sommer
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (09):