Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams

被引:192
|
作者
Alipanah, Morteza [1 ]
Li, Xianglin [1 ]
机构
[1] Univ Kansas, Dept Mech Engn, Lawrence, KS 66046 USA
关键词
Thermal management; Li-ion battery; Phase change material; Aluminum foam; Octadecane; Gallium; HEAT-PIPE; NATURAL-CONVECTION; CAPACITY FADE; POROUS-MEDIA; COMPOSITE; MODEL; PCM; ENHANCEMENT; CONTAINER; CELLS;
D O I
10.1016/j.ijheatmasstransfer.2016.07.010
中图分类号
O414.1 [热力学];
学科分类号
摘要
This article investigates thermal management systems (TMS) of lithium-ion battery made from pure octadecane, pure gallium and octadecane-Al foam composite materials by numerical simulations. Porosity of the Al foam changes from 0.97 to 0.925 and 0.88. The numerical simulation is based on SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm, staggered grid, and temperature transforming model. Three different heat fluxes of 400, 600, and 800 W/m(2) at the left and right boundaries of the computational domain are considered to simulate the heat released from the battery. Different TMS's thicknesses have been studied. The time variations of battery surface temperatures are compared with different phase change materials (PCMs) to compare the effectivity of the TMS. Results show that the discharge time before the average battery surface temperature reaches above 60 degrees C increases with an increasing thickness (between 7.5 and 15 mm) of the TMS. The result with pure octadecane indicates that the discharge time is increased by 87 percent when the thickness of the TMS is increased from 7.5 mm to 15 mm. The surface temperature of the battery is more uniform and the discharge time is 4.7 times longer when gallium is used as the PCM, compared with those with octadecane for all thicknesses at the heat flux of 600 W/m(2) and thickness of 12.5 mm. Adding metal matrix of 0.88 porosity to the octadecane led to 7.3 times longer discharge time compared to the pure octadecane. It is also found that adding the Al foam to octadecane remarkably increases the uniformity of the battery surface temperature, i.e. the maximum temperature difference at the surface of the battery decreased from 25 degrees C with pure octadecane to 2 x 10(-4) degrees C with octadecane-Al foam composite (0.88 porosity) after the battery discharges for 1000 s at 600 W/m(2) heat flux. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1159 / 1168
页数:10
相关论文
共 50 条
  • [1] Phase change materials for lithium-ion battery thermal management systems: A review
    Li, Zaichao
    Zhang, Yuang
    Zhang, Shufen
    Tang, Bingtao
    JOURNAL OF ENERGY STORAGE, 2024, 80
  • [2] Numerical investigation of lithium-ion battery thermal management using fins embedded in phase change materials
    Turkakar, Goker
    Hos, Ismail
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2023, 38 (02): : 1105 - 1116
  • [3] Thermal management performance of lithium-ion battery based on phase change materials
    Yin S.
    Kang P.
    Han J.
    Zhang C.
    Wang L.
    Tong L.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (10): : 5518 - 5529
  • [4] Numerical study on lithium-ion battery thermal management by using phase change material in various battery arrangements
    Yang, Huiqian
    Han, Zhitao
    PRZEMYSL CHEMICZNY, 2024, 103 (08):
  • [5] Flame retardant composite phase change materials with MXene for lithium-ion battery thermal management systems
    Wang, Yuqi
    Zhao, Luyao
    Zhan, Wang
    Chen, Yin
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [6] Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials
    Xie, Yongqi
    Tang, Jincheng
    Shi, Shang
    Xing, Yuming
    Wu, Hongwei
    Hu, Zhongliang
    Wen, Dongsheng
    ENERGY CONVERSION AND MANAGEMENT, 2017, 154 : 562 - 575
  • [7] Experimental Investigation on Phase Change Materials for Thermal Management of Lithium-ion Battery Packs
    Thaler, Stephan
    da Silva, Sylvicley Figueira
    Hauser, Robert
    Lackner, Roman
    PROCEEDINGS OF THE 14TH INTERNATIONAL RENEWABLE ENERGY STORAGE CONFERENCE 2020 (IRES 2020), 2021, 6 : 171 - 176
  • [8] Thermal management of lithium-ion battery module using the phase change material
    Nagmule, Siddharth A.
    Salunkhe, Pramod B.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023, 237 (23) : 5767 - 5776
  • [9] Thermal management investigation for lithium-ion battery module with different phase change materials
    Wang, Ziyuan
    Li, Xinxi
    Zhang, Guoqing
    Lv, Youfu
    Wang, Cong
    He, Fengqi
    Yang, Chengzhao
    Yang, Chuxiong
    RSC ADVANCES, 2017, 7 (68) : 42909 - 42918
  • [10] Numerical optimization for a phase change material based lithium-ion battery thermal management system
    Wang, Shuping
    Zhang, Danfeng
    Li, Changhao
    Wang, Junkai
    Zhang, Jiaqing
    Cheng, Yifeng
    Mei, Wenxin
    Cheng, Siyuan
    Qin, Peng
    Duan, Qiangling
    Sun, Jinhua
    Wang, Qingsong
    APPLIED THERMAL ENGINEERING, 2023, 222