Online monitoring of the nanoscale zero-valent iron process for trichloroethylene wastewater treatment

被引:3
|
作者
Yu, R. -F. [1 ]
Chi, F. -H. [2 ]
Cheng, W. -P. [1 ]
Wang, M. -H. [1 ]
机构
[1] Natl United Univ, Dept Safety Hlth & Environm Engn, Miaoli 360, Taiwan
[2] Kun Shan Univ Technol, Dept Environm Engn, Tainan 710, Taiwan
关键词
Artificial neural network; Monitoring and control; Nanoscale zero-valent iron; Oxidation-reduction potential; pH; Trichloroethylene; SODIUM CARBOXYMETHYL CELLULOSE; BIOLOGICAL NITROGEN REMOVAL; BIMETALLIC NANOPARTICLES; CONTROL STRATEGY; ZEROVALENT IRON; REDUCTION; ORP; DECHLORINATION; DYE; TCE;
D O I
10.1007/s13762-014-0567-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, a batch-type, nanoscale, zero-valent iron process was used to treat trichloroethylene wastewater. Variations in oxidation-reduction potential (ORP) and pH in the reactor were monitored online for use in developing the model for process control. After the addition of nanoscale, zero-valent iron, the pH value increased rapidly, from 5.0-6.0 to around 8.5-9.5, whereas the ORP decreased dramatically, from around 300 mV to -700 to -800 mV. The degradation of trichloroethylene reached equilibrium at a reaction time of about 120 min. The use of a dose of 1.5 g/L to treat an influent that had a trichloroethylene concentration of 50 mg/L resulted in a removal efficiency of 94 %. Two models, i.e., a multiple regression model and an artificial neural network (ANN) model, were used to develop the control model to predict the trichloroethylene removal efficiencies. Both the regression model and the ANN model performed precise prediction results for the trichloroethylene removal efficiencies, with correlation coefficients of about 0.87 and 0.98, respectively, resulting in great potential for controlling the trichloroethylene removal.
引用
下载
收藏
页码:1647 / 1656
页数:10
相关论文
共 50 条
  • [21] Nanoscale Zero-Valent Iron for Sulfide Removal from Digested Piggery Wastewater
    Chaung, Sheng-Hsun
    Wu, Pei-Fung
    Kao, Yu-Lin
    Yan, Weile
    Lien, Hsing-Lung
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [22] Activation process of air stable nanoscale zero-valent iron particles
    Ribas, D.
    Cernik, M.
    Benito, J. A.
    Filip, J.
    Marti, V.
    CHEMICAL ENGINEERING JOURNAL, 2017, 320 : 290 - 299
  • [23] Enhancing biological treatment of dye wastewater with zero-valent iron
    Younggyun Choi
    Byungju Park
    Daniel Kuhyon Cha
    Korean Journal of Chemical Engineering, 2015, 32 : 1812 - 1817
  • [24] Zero-valent iron mediated biological wastewater and sludge treatment
    Shi, Xingdong
    Wei, Wei
    Wu, Lan
    Ni, Bing-Jie
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [25] Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process
    Lai, Peng
    Zhao, Hua-zhang
    Zeng, Ming
    Ni, Jin-ren
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 162 (2-3) : 1423 - 1429
  • [26] Zero-valent iron mediated biological wastewater and sludge treatment
    Shi, Xingdong
    Wei, Wei
    Wu, Lan
    Ni, Bing-Jie
    Chemical Engineering Journal, 2021, 426
  • [27] ARSENIC IMMOBILIZATION BY NANOSCALE ZERO-VALENT IRON
    Rodova, Alena
    Filip, Jan
    Cernik, Miroslav
    Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S, 2015, 22 (01): : 45 - 59
  • [28] Enhancing biological treatment of dye wastewater with zero-valent iron
    Choi, Younggyun
    Park, Byungju
    Cha, Daniel Kuhyon
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2015, 32 (09) : 1812 - 1817
  • [29] Persulfate activation by natural zeolite supported nanoscale zero-valent iron for trichloroethylene degradation in groundwater
    Huang, Junyi
    Yi, Shuping
    Zheng, Chunmiao
    Lo, Irene M. C.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 684 : 351 - 359
  • [30] Reaction rates for the dehalogenation of trichloroethylene using various forms of nanoscale and microscale, zero-valent iron
    Stewart, Neil
    Geiger, Cherie L.
    Clausen, Christian A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231