Brain Computer Interfaces: A Recurrent Neural Network Approach

被引:0
|
作者
Oliver, Gareth [1 ]
Gedeon, Tom [1 ]
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
来源
NEURAL INFORMATION PROCESSING: MODELS AND APPLICATIONS, PT II | 2010年 / 6444卷
关键词
BCI; RNN; CasPer; Echostate Network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper explores the use of recurrent neural networks in the field of Brain Computer Interfaces(BCI). In particular it looks at a recurrent neural network, an echostate network and a CasPer neural network and attempts to use them to classify data from BCI competition Ills dataset IVa. In addition it proposes a new method. EchoCasPer, which uses the Cas Per training scheme in a recurrent neural network. The results showed that temporal information existed within the BCI data to be made use of, but further pre-processing and parameter exploration was needed to reach competitive classification rates.
引用
收藏
页码:66 / 73
页数:8
相关论文
共 50 条
  • [21] Analyzing Data Augmentation Methods for Convolutional Neural Network-based Brain-Computer Interfaces
    Faria, Gabriel
    de Souza, Gabriel Henrique
    Bernardino, Heder
    Motta, Luciana
    Vieira, Alex
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [22] MOCNN: A Multiscale Deep Convolutional Neural Network for ERP-Based Brain-Computer Interfaces
    Jin, Jing
    Xu, Ruitian
    Daly, Ian
    Zhao, Xueqing
    Wang, Xingyu
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (09) : 5565 - 5576
  • [23] MPnnet: a Motion Planning Decoding Convolutional Neural Network for EEG-based Brain Computer Interfaces
    Mammone, Nadia
    Ieracitano, Cosimo
    Morabito, Francesco C.
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [24] Convolutional Neural Network with a Topographic Representation Module for EEG-Based Brain-Computer Interfaces
    Liang, Xinbin
    Liu, Yaru
    Yu, Yang
    Liu, Kaixuan
    Liu, Yadong
    Zhou, Zongtan
    BRAIN SCIENCES, 2023, 13 (02)
  • [25] Brain?computer interfaces and personhood: interdisciplinary deliberations on neural technology
    Sample, Matthew
    Aunos, Marjorie
    Blain-Moraes, Stefanie
    Bublitz, Christoph
    Chandler, Jennifer A.
    Falk, Tiago H.
    Friedrich, Orsolya
    Groetzinger, Deanna
    Jox, Ralf J.
    Koegel, Johannes
    McFarland, Dennis
    Neufield, Valerie
    Rodriguez-Arias, David
    Sattler, Sebastian
    Vidal, Fernando
    Wolbring, Gregor
    Wolkenstein, Andreas
    Racine, Eric
    JOURNAL OF NEURAL ENGINEERING, 2019, 16 (06)
  • [26] Toward calibration-free motor imagery brain-computer interfaces: a VGG-based convolutional neural network and WGAN approach
    Habashi, A. G.
    Azab, Ahmed M.
    Eldawlatly, Seif
    Aly, Gamal M.
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (04)
  • [27] Brain–computer interfaces
    He, Bin
    Gao, Shangkai
    Yuan, Han
    Wolpaw, Jonathan R.
    Neural Engineering: Second Edition, 2013, : 87 - 151
  • [28] Motor Imagery-based Brain-Computer Interface: Neural Network Approach
    D. M. Lazurenko
    V. N. Kiroy
    I. E. Shepelev
    L. N. Podladchikova
    Optical Memory and Neural Networks, 2019, 28 : 109 - 117
  • [29] An Approach to Use Convolutional Neural Network Features in Eye-Brain-Computer-Interface
    Trofimov, A. G.
    Velichkovskiy, B. M.
    Shishkin, S. L.
    ADVANCES IN NEURAL COMPUTATION, MACHINE LEARNING, AND COGNITIVE RESEARCH, 2018, 736 : 132 - 137
  • [30] Motor Imagery-based Brain-Computer Interface: Neural Network Approach
    Lazurenko, D. M.
    Kiroy, V. N.
    Shepelev, I. E.
    Podladchikova, L. N.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2019, 28 (02) : 109 - 117