Multiscale Snapshots: Visual Analysis of Temporal Summaries in Dynamic Graphs

被引:8
|
作者
Cakmak, Eren [1 ]
Schlegel, Udo [1 ]
Jackle, Dominik
Keim, Daniel [1 ]
Schreck, Tobias [2 ]
机构
[1] Univ Konstanz, Constance, Germany
[2] Graz Univ Technol, Graz, Austria
关键词
Data visualization; Visual analytics; Task analysis; Dimensionality reduction; Animation; Scalability; Dynamic Graph; Dynamic Network; Unsupervised Graph Learning; Graph Embedding; Multiscale Visualization; TIME; VISUALIZATION; EXPLORATION; PATTERNS; SYSTEM;
D O I
10.1109/TVCG.2020.3030398
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.
引用
收藏
页码:517 / 527
页数:11
相关论文
共 50 条
  • [31] Visualizing the Temporal Similarity Between Clusters of Dynamic Graphs
    Wang, Yunzhe
    Baciu, George
    Li, Chenhui
    PROCEEDINGS OF THE 2019 IEEE 18TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2019), 2019, : 205 - 210
  • [32] Comparing Temporal Graphs Using Dynamic Time Warping
    Froese, Vincent
    Jain, Brijnesh
    Niedermeier, Rolf
    Renken, Malte
    COMPLEX NETWORKS AND THEIR APPLICATIONS VIII, VOL 2, 2020, 882 : 469 - 480
  • [33] Comparing temporal graphs using dynamic time warping
    Vincent Froese
    Brijnesh Jain
    Rolf Niedermeier
    Malte Renken
    Social Network Analysis and Mining, 2020, 10
  • [34] Hunting Temporal Bumps in Graphs with Dynamic Vertex Properties
    Sun, Yahui
    Ma, Shuai
    Cui, Bin
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 874 - 888
  • [35] Learning temporal attention in dynamic graphs with bilinear interactions
    Knyazev, Boris
    Augusta, Carolyn
    Taylor, Graham W.
    PLOS ONE, 2021, 16 (03):
  • [36] Multiscale Analysis of Temporal Ocean Turbulence Intermittency
    Chen, Xue
    Luan, Xin
    Song, Dalei
    Yang, Hua
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2019, 53 (03) : 54 - 62
  • [37] Temporal Analysis of Telecom Call Graphs
    Gurukar, Saket
    Ravindran, Balaraman
    2014 SIXTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMSNETS), 2014,
  • [38] Multiscale analysis of dynamic deformation in monocrystals
    Shehadeh, MA
    Zbib, HM
    de la Rubia, TD
    Bulatov, V
    IUTAM SYMPOSIUM ON MULTISCALE MODELING AND CHARACTERIZATION OF ELASTIC-INELASTIC BEHAVIOR OF ENGINEERING MATERIALS, PROCEEDINGS, 2004, 114 : 367 - 378
  • [39] Multiscale dynamic graph signal analysis
    Nazari, Mojtaba
    Korshoj, Anders Rosendal
    Rehman, Naveed ur
    SIGNAL PROCESSING, 2024, 222
  • [40] Nonuniform Timeslicing of Dynamic Graphs Based on Visual Complexity
    Wang, Yong
    Archambault, Daniel
    Haleem, Hammad
    Moeller, Torsten
    Wu, Yanhong
    Qu, Huamin
    2019 IEEE VISUALIZATION CONFERENCE (VIS), 2019, : 241 - 245