Improved bounds on partial derivatives of rational triangular Bezier surfaces

被引:4
|
作者
Hu, Qian-Qian
Wang, Guo-Jin [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
rational Bezier curve; rational triangular Bezier surface; bivariate Bernstein basis; bound on derivative;
D O I
10.1016/j.cad.2007.08.004
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper applies inequality skill, degree elevation of triangular Bezier surfaces and difference operators to deduce the bounds on first and second partial derivatives of rational triangular Bezier surfaces. Further more, we prove that the new bounds are tighter and more effective than the known ones. All the results are obviously helpful for further optimization of geometric design systems. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1113 / 1119
页数:7
相关论文
共 50 条
  • [21] Bounds on partial derivatives of NURBS surfaces
    WANG Guo-jin
    XU Hui-xia
    HU Qian-qian
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2017, 32 (03) : 281 - 293
  • [22] Bounds on partial derivatives of NURBS surfaces
    Wang, Guo-jin
    Xu, Hui-xia
    Hu, Qian-qian
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (03) : 281 - 293
  • [23] COONS TRIANGULAR BEZIER SURFACES
    Arnal, A.
    Lluch, A.
    [J]. GRAPP 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2010, : 148 - 153
  • [24] Rational Bezier form of hodographs of rational Bezier curves and surfaces
    Kim, DS
    Jang, T
    Shin, H
    Park, JY
    [J]. COMPUTER-AIDED DESIGN, 2001, 33 (04) : 321 - 330
  • [25] On the bounds of the derivative of rational Bezier curves
    Li, Yajuan
    Deng, Chongyang
    Jin, Wenbiao
    Zhao, Nailiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (21) : 10425 - 10433
  • [26] Convolution surfaces of quadratic triangular Bezier surfaces
    Peternell, Martin
    Odehnal, Boris
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2008, 25 (02) : 116 - 129
  • [27] Standardization of rational Bezier surfaces
    Yang, Yijun
    Yong, Junhai
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2007, 19 (02): : 245 - 250
  • [28] Triangular Bezier surfaces of minimal area
    Arnal, A
    Lluch, A
    Monterde, J
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCA 2003, PT 3, PROCEEDINGS, 2003, 2669 : 366 - 375
  • [29] Equiareal Parameterization of Triangular Bezier Surfaces
    Chen, Jun
    Kong, Xiang
    Xu, Huixia
    [J]. MATHEMATICS, 2022, 10 (23)
  • [30] Triangular subpatches of rectangular Bezier surfaces
    Lasser, Dieter
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (08) : 1706 - 1719