UNDO: a Bioconductor R package for unsupervised deconvolution of mixed gene expressions in tumor samples

被引:42
|
作者
Wang, Niya [1 ]
Gong, Ting [2 ]
Clarke, Robert [3 ]
Chen, Lulu [1 ]
Shih, Ie-Ming [4 ,5 ]
Zhang, Zhen [4 ,5 ]
Levine, Douglas A. [6 ]
Xuan, Jianhua [1 ]
Wang, Yue [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Arlington, VA 22203 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Mol Carcinogenesis, Smithville, TX 78957 USA
[3] Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA
[4] Johns Hopkins Univ, Dept Pathol, Baltimore, MD 21231 USA
[5] Johns Hopkins Univ, Dept Oncol, Baltimore, MD 21231 USA
[6] Mem Sloan Kettering Canc Ctr, Dept Surg, New York, NY 10021 USA
基金
美国国家卫生研究院;
关键词
CANCER;
D O I
10.1093/bioinformatics/btu607
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A Summary: We develop a novel unsupervised deconvolution method, within a well-grounded mathematical framework, to dissect mixed gene expressions in heterogeneous tumor samples. We implement an R package, UNsupervised DecOnvolution (UNDO), that can be used to automatically detect cell-specific marker genes (MGs) located on the scatter radii of mixed gene expressions, estimate cellular proportions in each sample and deconvolute mixed expressions into cell-specific expression profiles. We demonstrate the performance of UNDO over a wide range of tumor-stroma mixing proportions, validate UNDO on various biologically mixed benchmark gene expression datasets and further estimate tumor purity in TCGA/CPTAC datasets. The highly accurate deconvolution results obtained suggest not only the existence of cell-specific MGs but also UNDO's ability to detect them blindly and correctly. Although the principal application here involves microarray gene expressions, our methodology can be readily applied to other types of quantitative molecular profiling data.
引用
收藏
页码:137 / 139
页数:3
相关论文
共 30 条
  • [21] CancerInSilico: An R/Bioconductor package for combining mathematical and statistical modeling to simulate time course bulk and single cell gene expression data in cancer
    Sherman, Thomas D.
    Kagohara, Luciane T.
    Cao, Raymon
    Cheng, Raymond
    Satriano, Matthew
    Considine, Michael
    Krigsfeld, Gabriel
    Ranaweera, Ruchira
    Tang, Yong
    Jablonski, Sandra A.
    Stein-O'Brien, Genevieve
    Gaykalova, Daria A.
    Weiner, Louis M.
    Chung, Christine H.
    Fertig, Elana J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (04)
  • [22] DNAfusion: An R/Bioconductor package for increased sensitivity of detecting EML4-ALK gene fusions in liquid biopsies from cancer patients
    Maansson, Christoffer Trier
    Andersen, Emma Roger
    Ulhoi, Maiken Parm
    Meldgaard, Peter
    Sorensen, Boe Sandahl
    [J]. CANCER RESEARCH, 2023, 83 (07)
  • [23] pRRophetic: An R Package for Prediction of Clinical Chemotherapeutic Response from Tumor Gene Expression Levels
    Geeleher, Paul
    Cox, Nancy
    Huang, R. Stephanie
    [J]. PLOS ONE, 2014, 9 (09):
  • [24] scMuffin: an R package to disentangle solid tumor heterogeneity by single-cell gene expression analysis
    Nale, Valentina
    Chiodi, Alice
    Di Nanni, Noemi
    Cifola, Ingrid
    Moscatelli, Marco
    Cocola, Cinzia
    Gnocchi, Matteo
    Piscitelli, Eleonora
    Sula, Ada
    Zucchi, Ileana
    Reinbold, Rolland
    Milanesi, Luciano
    Mezzelani, Alessandra
    Pelucchi, Paride
    Mosca, Ettore
    [J]. BMC BIOINFORMATICS, 2023, 24 (01)
  • [25] scMuffin: an R package to disentangle solid tumor heterogeneity by single-cell gene expression analysis
    Valentina Nale
    Alice Chiodi
    Noemi Di Nanni
    Ingrid Cifola
    Marco Moscatelli
    Cinzia Cocola
    Matteo Gnocchi
    Eleonora Piscitelli
    Ada Sula
    Ileana Zucchi
    Rolland Reinbold
    Luciano Milanesi
    Alessandra Mezzelani
    Paride Pelucchi
    Ettore Mosca
    [J]. BMC Bioinformatics, 24
  • [26] Using the computerized glow curve deconvolution method and the R package tgcd to determination of thermoluminescence kinetic parameters of chilli powder samples by GOK model and OTOR one
    Nguyen Duy Sang
    Nguyen Van Hung
    Tran Van Hung
    Nguyen Quoc Hien
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 394 : 113 - 120
  • [27] MixviR: an R Package for Exploring Variation Associated with Genomic Sequence Data from Environmental SARS-CoV-2 and Other Mixed Microbial Samples
    Sovic, Michael G.
    Savona, Francesca
    Bohrerova, Zuzana
    Faith, Seth A.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2022, 88 (22)
  • [28] SparseSignatures: An R package using LASSO- regularized non-negative matrix factorization to identify mutational signatures from human tumor samples
    Mella, Lorenzo
    Lal, Avantika
    Angaroni, Fabrizio
    Maspero, Davide
    Piazza, Rocco
    Sidow, Arend
    Antoniotti, Marco
    Graudenzi, Alex
    Ramazzotti, Daniele
    [J]. STAR PROTOCOLS, 2022, 3 (03):
  • [29] Prediction of tumor responses towards chemotherapy in squamous esophageal cancer patients by quantitative assesssment of MDR, MRP, GST-π and DNA topoisomerase II gene expressions using endoscopic biopsy tissue samples
    Chan, CWA
    Griffith, J
    Leung, S
    Lo, A
    Ip, S
    Lam, C
    Lam, Y
    Chung, S
    [J]. GASTROENTEROLOGY, 1999, 116 (04) : A386 - A386
  • [30] Gene expressions of tumor necrosis factor-α post-transcriptional regulators, tristetraprolin, T cell intracellular antigen-1 and Hu antigen R in rheumatoid arthritis patients treated with infliximab.
    Sugihara, Makoto
    Tsutsumi, Akito
    Suzuki, Eiji
    Matsui, Hiroto
    Kohno, Mika
    Suzuki, Takeshi
    Ishii, Wataru
    Mamura, Mizuko
    Goto, Daisuke
    Matsumoto, Isao
    Ito, Satoshi
    Sumida, Takayuki
    [J]. ARTHRITIS AND RHEUMATISM, 2006, 54 (09): : S239 - S240