UNDO: a Bioconductor R package for unsupervised deconvolution of mixed gene expressions in tumor samples

被引:42
|
作者
Wang, Niya [1 ]
Gong, Ting [2 ]
Clarke, Robert [3 ]
Chen, Lulu [1 ]
Shih, Ie-Ming [4 ,5 ]
Zhang, Zhen [4 ,5 ]
Levine, Douglas A. [6 ]
Xuan, Jianhua [1 ]
Wang, Yue [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Arlington, VA 22203 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Mol Carcinogenesis, Smithville, TX 78957 USA
[3] Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA
[4] Johns Hopkins Univ, Dept Pathol, Baltimore, MD 21231 USA
[5] Johns Hopkins Univ, Dept Oncol, Baltimore, MD 21231 USA
[6] Mem Sloan Kettering Canc Ctr, Dept Surg, New York, NY 10021 USA
基金
美国国家卫生研究院;
关键词
CANCER;
D O I
10.1093/bioinformatics/btu607
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A Summary: We develop a novel unsupervised deconvolution method, within a well-grounded mathematical framework, to dissect mixed gene expressions in heterogeneous tumor samples. We implement an R package, UNsupervised DecOnvolution (UNDO), that can be used to automatically detect cell-specific marker genes (MGs) located on the scatter radii of mixed gene expressions, estimate cellular proportions in each sample and deconvolute mixed expressions into cell-specific expression profiles. We demonstrate the performance of UNDO over a wide range of tumor-stroma mixing proportions, validate UNDO on various biologically mixed benchmark gene expression datasets and further estimate tumor purity in TCGA/CPTAC datasets. The highly accurate deconvolution results obtained suggest not only the existence of cell-specific MGs but also UNDO's ability to detect them blindly and correctly. Although the principal application here involves microarray gene expressions, our methodology can be readily applied to other types of quantitative molecular profiling data.
引用
收藏
页码:137 / 139
页数:3
相关论文
共 30 条
  • [1] debCAM: a bioconductor R package for fully unsupervised deconvolution of complex tissues
    Chen, Lulu
    Wu, Chiung-Ting
    Wang, Niya
    Herrington, David M.
    Clarke, Robert
    Wang, Yue
    [J]. BIOINFORMATICS, 2020, 36 (12) : 3927 - 3929
  • [2] GSAR: Bioconductor package for Gene Set analysis in R
    Yasir Rahmatallah
    Boris Zybailov
    Frank Emmert-Streib
    Galina Glazko
    [J]. BMC Bioinformatics, 18
  • [3] GSAR: Bioconductor package for Gene Set analysis in R
    Rahmatallah, Yasir
    Zybailov, Boris
    Emmert-Streib, Frank
    Glazko, Galina
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [4] Katdetectr: an R/bioconductor package utilizing unsupervised changepoint analysis for robust kataegis detection
    Hazelaar, Daan M.
    van Riet, Job
    Hoogstrate, Youri
    van de Werken, Harmen J. G.
    [J]. GIGASCIENCE, 2023, 12
  • [5] mAPKL: R/Bioconductor package for detecting gene exemplars and revealing their characteristics
    Sakellariou, Argiris
    Spyrou, George
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [6] mAPKL: R/ Bioconductor package for detecting gene exemplars and revealing their characteristics
    Argiris Sakellariou
    George Spyrou
    [J]. BMC Bioinformatics, 16
  • [7] NetPathMiner: R/Bioconductor package for network path mining through gene expression
    Mohamed, Ahmed
    Hancock, Timothy
    Canh Hao Nguyen
    Mamitsuka, Hiroshi
    [J]. BIOINFORMATICS, 2014, 30 (21) : 3139 - 3141
  • [8] DNAfusion: an R/Bioconductor package for increased sensitivity of detecting gene fusions in liquid biopsies
    Christoffer Trier Maansson
    Emma Roger Andersen
    Maiken Parm Ulhoi
    Peter Meldgaard
    Boe Sandahl Sorensen
    [J]. BMC Bioinformatics, 24
  • [9] DNAfusion: an R/Bioconductor package for increased sensitivity of detecting gene fusions in liquid biopsies
    Maansson, Christoffer Trier
    Andersen, Emma Roger
    Ulhoi, Maiken Parm
    Meldgaard, Peter
    Sorensen, Boe Sandahl
    [J]. BMC BIOINFORMATICS, 2023, 24 (01)
  • [10] swCAM: estimation of subtype-specific expressions in individual samples with unsupervised sample-wise deconvolution
    Chen, Lulu
    Wu, Chiung-Ting
    Lin, Chia-Hsiang
    Dai, Rujia
    Liu, Chunyu
    Clarke, Robert
    Yu, Guoqiang
    Van Eyk, Jennifer E.
    Herrington, David M.
    Wang, Yue
    [J]. BIOINFORMATICS, 2022, 38 (05) : 1403 - 1410