Kernelization results for Equitable Coloring

被引:1
|
作者
Gomes, Guilherme C. M. [1 ]
dos Santos, Vinicius F. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Ciencia Comp, Belo Horizonte, MG, Brazil
关键词
equitable coloring; parameterized complexity; kernelization; distance to clique; vertex cover; cross-composition; PARAMETERIZED COMPLEXITY; GRAPH;
D O I
10.1016/j.procs.2021.11.011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An n-vertex graph is equitably k-colorable if there is a proper coloring of its vertices such that each color is used either left perpendicularn/kright perpendicular or inverted right perpendicularn/kleft perpendicular times. While classic VERTEX COLORING is fixed parameter tractable under well established parameters such as pathwidth and feedback vertex set, equitable coloring is W[1]-hard. Little is known, however, about kernelization aspects of EQUITABLE COLORING. In this work, we begin this investigation by first presenting a linear kernel for the parameter distance to clique, which contrasts with the quadratic kernel for VERTEX COLORING under the same parameterization. Our main technical contribution is an OR-cross composition from MULTICOLORED CLIQUE to NUMBER LIST COLORING parameterized by vertex cover and number of colors which, along with two simple PPT reductions, implies that EQUITABLE COLORING has no polynomial kernel under the same parameterization unless NP subset of coNP/poly. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 50 条
  • [1] Structural Parameterizations for Equitable Coloring: Complexity, FPT Algorithms, and Kernelization
    Guilherme C. M. Gomes
    Matheus R. Guedes
    Vinicius F. dos Santos
    [J]. Algorithmica, 2023, 85 : 1912 - 1947
  • [2] Structural Parameterizations for Equitable Coloring: Complexity, FPT Algorithms, and Kernelization
    Gomes, Guilherme C. M.
    Guedes, Matheus R.
    dos Santos, Vinicius F.
    [J]. ALGORITHMICA, 2023, 85 (07) : 1912 - 1947
  • [3] Proofs for some known results of equitable coloring
    LI Shao-rong1
    2.College of Mathematics and information Science
    [J]. 商丘师范学院学报, 2008, (09) : 42 - 44
  • [4] EQUITABLE COLORING
    MEYER, W
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (08): : 920 - 922
  • [5] SOME NEW RESULTS ON EQUITABLE COLORING PARAMETERS OF GRAPHS
    Sudev, N. K.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (01): : 109 - 122
  • [6] EQUITABLE COLORING OF TREES
    CHEN, BL
    LIH, KW
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 61 (01) : 83 - 87
  • [7] Equitable coloring of hypergraphs
    Furmanczyk, Hanna
    Obszarski, Pawel
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 261 : 186 - 192
  • [8] Equitable oriented coloring
    Dybizbanski, Janusz
    [J]. JOURNAL OF GRAPH THEORY, 2023, 104 (01) : 171 - 187
  • [9] Equitable Δ-coloring of graphs
    Chen, Bor-Liang
    Yen, Chih-Hung
    [J]. DISCRETE MATHEMATICS, 2012, 312 (09) : 1512 - 1517
  • [10] Domination Equitable Coloring of graphs
    Haribabu, Rebekal
    Arul, Sharmila Mary
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1417 - 1420