Regional heritability mapping and genome-wide association identify loci for rice traits

被引:1
|
作者
Suela, Matheus M. [1 ]
Azevedo, Camila F. [2 ]
Nascimento, Moyses [2 ]
Nascimento, Ana Carolina C. [2 ]
de Resende, Marcos Deon, V [2 ,3 ]
机构
[1] Univ Fed Vicosa, Grad Program Genet & Breeding, Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Stat Dept, Vicosa, MG, Brazil
[3] Embrapa Coffee, Brasilia, DF, Brazil
关键词
ADVANCED BACKCROSS POPULATION; X ENVIRONMENT INTERACTION; BLAST RESISTANCE GENES; ORYZA-SATIVA L; PLANT HEIGHT; YIELD COMPONENTS; QTL ANALYSIS; LINKAGE DISEQUILIBRIUM; GRAIN-YIELD; QUANTITATIVE RESISTANCE;
D O I
10.1002/csc2.20706
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Although genome-wide association studies (GWAS) based on single-marker analysis have been widely applied in plant breeding programs, the effectivity of the methodology is still undermined by high false-positive rates and the limited power to detect associations. Bayesian methods, which estimate marker effects simultaneously, proved to be efficient, indicating genes with important effects. Regional heritability mapping (RHM), on the other hand, determines the genome region (group of markers) associated with the phenotype, considers population structure and familial relatedness, and is more powerful to detect quantitative trait loci (QTL) and reduced false-positive rates than single-marker methodologies. A single-marker mixed model (SM-MM) Bayesian approach and RHM were used for 11 traits in 413 rice (Oryza sativa L.) accessions genotyped for 44,100 single-nucleotide polymorphism (SNP) markers. Using RHM in regions of 0.21 and 0.69 Mb, respectively, detected five and seven associated regions with 163 and 569 SNPs. Bayesian method with regions of 0.21 and 0.69 Mb detected regions for all traits, whereas SM-MM detected four single SNP-trait associations. For the 11 traits, RHM explained approximately 25-40 and 25-76% using genome regions of 0.21 and 0.69 Mb, respectively, and SM-MM using single markers explained 1-7% of the genomic heritability. Regional heritability mapping was more effective than SM-MM in capturing major proportions of genomic heritability. The regions found in this study were within or close to the QTL noted in the Q-TARO and Gramene QTL databases.
引用
收藏
页码:839 / 858
页数:20
相关论文
共 50 条
  • [41] Open access resources for genome-wide association mapping in rice
    Susan R. McCouch
    Mark H. Wright
    Chih-Wei Tung
    Lyza G. Maron
    Kenneth L. McNally
    Melissa Fitzgerald
    Namrata Singh
    Genevieve DeClerck
    Francisco Agosto-Perez
    Pavel Korniliev
    Anthony J. Greenberg
    Ma. Elizabeth B. Naredo
    Sheila Mae Q. Mercado
    Sandra E. Harrington
    Yuxin Shi
    Darcy A. Branchini
    Paula R. Kuser-Falcão
    Hei Leung
    Kowaru Ebana
    Masahiro Yano
    Georgia Eizenga
    Anna McClung
    Jason Mezey
    [J]. Nature Communications, 7
  • [42] Genome-Wide Association Mapping for Grain Shape in Rice Accessions
    Qiu, Xianjin
    Zhu, Shuangbing
    Hu, Hui
    Wang, Chunchao
    Lv, Wenkai
    He, Liping
    Xu, Junying
    Li, Zhixin
    Xing, Danying
    Yang, Longwei
    Wei, Wenhang
    Xu, Jianlong
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2020, 23 (03) : 582 - 588
  • [43] Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits
    Lane, Jacqueline M.
    Liang, Jingjing
    Vlasac, Irma
    Anderson, Simon G.
    Bechtold, David A.
    Bowden, Jack
    Emsley, Richard
    Gill, Shubhroz
    Little, Max A.
    Luik, Annemarie I.
    Loudon, Andrew
    Scheer, Frank A. J. L.
    Purcell, Shaun M.
    Kyle, Simon D.
    Lawlor, Deborah A.
    Zhu, Xiaofeng
    Redline, Susan
    Ray, David W.
    Rutter, Martin K.
    Saxena, Richa
    [J]. NATURE GENETICS, 2017, 49 (02) : 274 - 281
  • [44] Genome-wide association mapping for root cone angle in rice
    Bettembourg, Mathilde
    Dardou, Audrey
    Audebert, Alain
    Thomas, Emilie
    Frouin, Julien
    Guiderdoni, Emmanuel
    Ahmadi, Nourollah
    Perin, Christophe
    Dievart, Anne
    Courtois, Brigitte
    [J]. RICE, 2017, 10
  • [45] Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo
    Liu, J. J.
    Liang, A. X.
    Campanile, G.
    Plastow, G.
    Zhang, C.
    Wang, Z.
    Salzano, A.
    Gasparrini, B.
    Cassandro, M.
    Yang, L. G.
    [J]. JOURNAL OF DAIRY SCIENCE, 2018, 101 (01) : 433 - 444
  • [46] Quantitative trait loci for rice blast resistance detected in a local rice breeding population by genome-wide association mapping
    Shinada, Hiroshi
    Yamamoto, Toshio
    Sato, Hirokazu
    Yamamoto, Eiji
    Hori, Kiyosumi
    Yonemaru, Junichi
    Sato, Takashi
    Fujino, Kenji
    [J]. BREEDING SCIENCE, 2015, 65 (05) : 388 - 395
  • [47] Genome-wide mapping of Piwi association with specific loci in Drosophila ovaries
    Liu, Na
    Neuenkirchen, Nils
    Zhong, Mei
    Lin, Haifan
    [J]. G3-GENES GENOMES GENETICS, 2021, 11 (02):
  • [48] Genome wide association mapping for grain shape traits in indica rice
    Yue Feng
    Qing Lu
    Rongrong Zhai
    Mengchen Zhang
    Qun Xu
    Yaolong Yang
    Shan Wang
    Xiaoping Yuan
    Hanyong Yu
    Yiping Wang
    Xinghua Wei
    [J]. Planta, 2016, 244 : 819 - 830
  • [49] Genome wide association mapping to identify aluminium tolerance loci in bread wheat
    S. Navakode
    K. Neumann
    B. Kobiljski
    U. Lohwasser
    A. Börner
    [J]. Euphytica, 2014, 198 : 401 - 411
  • [50] Genome wide association mapping for grain shape traits in indica rice
    Feng, Yue
    Lu, Qing
    Zhai, Rongrong
    Zhang, Mengchen
    Xu, Qun
    Yang, Yaolong
    Wang, Shan
    Yuan, Xiaoping
    Yu, Hanyong
    Wang, Yiping
    Wei, Xinghua
    [J]. PLANTA, 2016, 244 (04) : 819 - 830